Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(9): e107505, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35099835

RESUMEN

Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell-cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis- and trans-synaptic protein complexes. Here, we present a 2.7 Å cryo-EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C-rich, YD-shell, and ABD domains. A 1.5 Å crystal structure of the C-rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS-based rigid-body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium-dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis-dimer is compatible with homomeric trans-interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis- and trans-synaptic interactions to construct functional neuronal circuits.


Asunto(s)
Calcio , Tenascina , Animales , Calcio/metabolismo , Humanos , Neuronas/metabolismo , Conformación Proteica , Dispersión del Ángulo Pequeño , Tenascina/química , Tenascina/metabolismo , Difracción de Rayos X
2.
Biotechnol Bioeng ; 119(2): 493-503, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34796477

RESUMEN

Lignin valorization may offer a sustainable approach to achieve a chemical industry that is not completely dependent on fossil resources for the production of aromatics. However, lignin is a recalcitrant, heterogeneous, and complex polymeric compound for which only very few catalysts can act in a predictable and reproducible manner. Laccase is one of those catalysts and has often been referred to as an ideal "green" catalyst, as it is able to oxidize various linkages within lignin to release aromatic products, with the use of molecular oxygen and formation of water as the only side product. The extent and rate of laccase-catalyzed lignin conversion were measured using the label-free analytical technique isothermal titration calorimetry (ITC). IITC provides the molar enthalpy of the reaction, which reflects the extent of conversion and the time-dependent power trace, which reflects the rate of the reaction. Calorimetric assessment of the lignin conversion brought about by various fungal and bacterial laccases in the absence of mediators showed marked differences in the extent and rate of conversion for the different enzymes. Kraft lignin conversion by Trametes versicolor laccase followed Michaelis-Menten kinetics and was characterized by the following thermodynamic and kinetic parameters ΔHITC = -(2.06 ± 0.06)·103 kJ mol-1 , KM = 6.6 ± 1.2 µM and Vmax = 0.30 ± 0.02 U/mg at 25°C and pH 6.5. We envision calorimetric techniques as important tools for the development of enzymatic lignin valorization strategies.


Asunto(s)
Calorimetría/métodos , Lacasa , Lignina , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Lacasa/química , Lacasa/metabolismo , Lignina/análisis , Lignina/química , Lignina/metabolismo , Polyporaceae/enzimología , Polyporaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...