Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38373902

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/genetics , Phylogeny , Genomics , Disease Outbreaks
2.
Microbiol Res ; 281: 127605, 2024 Apr.
Article En | MEDLINE | ID: mdl-38232495

Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.


Salmonella typhimurium , Spermidine , Animals , Mice , Salmonella typhimurium/metabolism , Spermidine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagellin/genetics , Polyamines/metabolism , Gene Expression Regulation, Bacterial
3.
Viruses ; 15(1)2022 12 31.
Article En | MEDLINE | ID: mdl-36680170

Monkeypox is an infectious zoonotic disease caused by an Orthopoxvirus and results in symptoms similar to smallpox. In a recent outbreak, monkeypox virus (MPXV) cases have been reported globally since May 2022, and the numbers are increasing. Monkeypox was first diagnosed in humans in the Democratic Republic of Congo and has now spread to throughout Europe, the USA, and Africa. In this study, we analyzed the whole genome sequences of MPXV sequences from recent outbreaks in various countries and performed phylogenomic analysis. Our analysis of the available human MPXV strains showed the highest mutations per sample in 2022 with the average number of mutations per sample being the highest in South America and the European continents in 2022. We analyzed specific mutations in 11 Indian MPXV strains occurring in the variable end regions of the MPXV genome, where the mutation number was as high as 10 mutations per gene. Among these, envelope glycoproteins, the B2R protein, the Ankyrin repeat protein, DNA polymerase, and the INF alpha receptor-like secreted glycoprotein were seen to have a relatively high number of mutations. We discussed the stabilizing effects of the mutations in some of the highly mutating proteins. Our results showed that the proteins involved in binding to the host receptors were mutating at a faster rate, which empowered the virus for active selection towards increased disease transmissibility and severity.


Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/diagnosis , Phylogeny , DNA-Directed DNA Polymerase/genetics , Mutation
...