Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6703): ado7082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935715

RESUMEN

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Asunto(s)
Encéfalo , Metilación de ADN , Dependovirus , Silenciador del Gen , Histonas , Proteínas Priónicas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Dependovirus/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Histonas/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Transgenes
2.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38753766

RESUMEN

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Asunto(s)
Antígenos CD , Encéfalo , Cápside , Técnicas de Transferencia de Gen , Vectores Genéticos , Glucosilceramidasa , Receptores de Transferrina , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Dependovirus , Células Endoteliales/metabolismo , Técnicas de Sustitución del Gen , Terapia Genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Glucosilceramidasa/genética , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia
4.
BMC Biol ; 21(1): 232, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957716

RESUMEN

BACKGROUND: Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. RESULTS: Using the ASD and anxiety mouse model Flailer, which contains a partial genomic duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700 bp genomic region in vitro and in vivo. Importantly, DN-CRISPRs have not been used to remove genomic regions using sgRNA with an offset greater than 300 bp. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene editing. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescue some of the mutant behaviors, while intracerebroventricular delivery, completely recovers the Flailer animal phenotype associated to anxiety and ASD. CONCLUSIONS: Our results demonstrate the potential of DN-CRISPR to efficiently remove larger genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.


Asunto(s)
Trastorno del Espectro Autista , Ratones , Animales , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , ARN Guía de Sistemas CRISPR-Cas , Transmisión Sináptica/genética , Genómica
5.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824615

RESUMEN

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Asunto(s)
Callithrix , Neocórtex , Animales , Neocórtex/fisiología , Neuronas/fisiología , Distribución Tisular
6.
Nature ; 622(7983): 552-561, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758947

RESUMEN

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Asunto(s)
Sistema Nervioso Central , Imagenología Tridimensional , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/anatomía & histología , Médula Espinal/citología , Médula Espinal/metabolismo , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula , Tropismo Viral , Conjuntos de Datos como Asunto , Transgenes/genética , Imagenología Tridimensional/métodos
8.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37467291

RESUMEN

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Asunto(s)
Barrera Hematoencefálica , Cápside , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Cápside/metabolismo , Vectores Genéticos , Sistema Nervioso Central/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
9.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430038

RESUMEN

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Asunto(s)
Encéfalo , Callithrix , Humanos , Animales , Recién Nacido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiología , Técnicas de Transferencia de Gen , Neuronas , Vectores Genéticos/genética
10.
Res Sq ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36789432

RESUMEN

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

11.
bioRxiv ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187643

RESUMEN

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.

12.
Nat Cardiovasc Res ; 1(4): 389-400, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571675

RESUMEN

Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.

13.
Life Sci Alliance ; 4(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34407999

RESUMEN

Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Transducción Genética , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Proteína Niemann-Pick C1/genética , Fenotipo , Distribución Tisular , Transgenes , Resultado del Tratamiento
14.
Brain Commun ; 3(2): fcab105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131644

RESUMEN

The engineering of the AAV-PHP capsids was an important development for CNS research and the modulation of gene expression in the brain. They cross the blood brain barrier and transduce brain cells after intravenous systemic delivery, a property dependent on the genotype of Ly6a, the AAV-PHP capsid receptor. It is important to determine the transduction efficiency of a given viral preparation, as well as the comparative tropism for different brain cells; however, manual estimation of adeno-associated viral transduction efficiencies can be biased and time consuming. Therefore, we have used the Opera Phenix high-content screening system, equipped with the Harmony processing and analysis software, to reduce bias and develop an automated approach to determining transduction efficiency in the mouse brain. We used R Studio and 'gatepoints' to segment the data captured from coronal brain sections into brain regions of interest. C57BL/6J and CBA/Ca mice were injected with an AAV-PHP.B virus containing a green fluorescent protein reporter with a nuclear localization signal. Coronal sections at 600 µm intervals throughout the entire brain were stained with Hoechst dye, combined with immunofluorescence to NeuN and green fluorescent protein to identify all cell nuclei, neurons and transduced cells, respectively. Automated data analysis was applied to give an estimate of neuronal percentages and transduction efficiencies throughout the entire brain as well as for the cortex, striatum and hippocampus. The data from each coronal section from a given mouse were highly comparable. The percentage of neurons in the C57BL/6J and CBA/Ca brains was approximately 40% and this was higher in the cortex than striatum and hippocampus. The systemic injection of AAV-PHP.B resulted in similar transduction rates across the entire brain for C57BL/6J mice. Approximately 10-15% of all cells were transduced, with neuronal transduction efficiencies ranging from 5% to 15%, estimates that were similar across brain regions, and were in contrast to the much more localized transduction efficiencies achieved through intracerebral injection. We confirmed that the delivery of the AAV-PHP.B viruses to the brain from the vasculature resulted in widespread transduction. Our methodology allows the rapid comparison of transduction rates between brain regions producing comparable data to more time-consuming approaches. The methodology developed here can be applied to the automated quantification of any parameter of interest that can be captured as a fluorescent signal.

16.
Nature ; 592(7853): 195-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828315

RESUMEN

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Asunto(s)
Células/metabolismo , Edición Génica/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organización & administración , Animales , Terapia Genética , Objetivos , Humanos , Estados Unidos
17.
Elife ; 102021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620031

RESUMEN

COVID-19 CG (covidcg.org) is an open resource for tracking SARS-CoV-2 single-nucleotide variations (SNVs), lineages, and clades using the virus genomes on the GISAID database while filtering by location, date, gene, and mutation of interest. COVID-19 CG provides significant time, labor, and cost-saving utility to projects on SARS-CoV-2 transmission, evolution, diagnostics, therapeutics, vaccines, and intervention tracking. Here, we describe case studies in which users can interrogate (1) SNVs in the SARS-CoV-2 spike receptor binding domain (RBD) across different geographical regions to inform the design and testing of therapeutics, (2) SNVs that may impact the sensitivity of commonly used diagnostic primers, and (3) the emergence of a dominant lineage harboring an S477N RBD mutation in Australia in 2020. To accelerate COVID-19 efforts, COVID-19 CG will be upgraded with new features for users to rapidly pinpoint mutations as the virus evolves throughout the pandemic and in response to therapeutic and public health interventions.


The discovery of faster spreading variants of the virus that causes coronavirus disease 2019 (COVID-19) has raised alarm. These new variants are the result of changes (called mutations) in the virus' genetic code. Random mutations can occur each time a virus multiplies. Although most mutations do not introduce any meaningful changes, some can alter the characteristics of the virus, for instance, helping the virus to spread more easily, reinfecting people who have had COVID-19 before, or reducing the sensitivity to treatments or vaccines. Scientists need to know about mutations in the virus that make treatments or vaccines less effective as soon as possible, so they can adjust their pandemic response. As a result, tracking these genetic changes is essential. But individual scientists or public health agencies may not have the staff, time or computer resources to extract usable information from the growing amount of genetic data available. A free online tool created by Chen et al. may help scientists and public health officials to track changes to the virus more easily. The COVID-19 CoV Genetics tool (COVID-19 CG) can quickly provide information on which virus mutations are present in an area during a specific period. It does this by processing data on mutations found in viral genetic material collected worldwide from hundreds of thousands of people with COVID-19, which are hosted in an existing online database. The COVID-19 CG tool presents customizable, interactive visualizations of the data. Thousands of scientists, public health agencies, and COVID-19 vaccine and treatment developers in over 100 countries are already using the COVID-19 CG tool to find the most common mutations in their area and use it for research. They can use this information to develop more effective vaccines or treatments. Chen et al. plan to update and improve the tool as more information becomes available to help advance global efforts to end the COVID-19 pandemic.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Genoma Viral/genética , Mutación , SARS-CoV-2/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , COVID-19/epidemiología , COVID-19/virología , Geografía , Salud Global , Humanos , Internet , Pandemias , Sistemas de Identificación de Pacientes/métodos , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Programas Informáticos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
18.
bioRxiv ; 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32995794

RESUMEN

COVID-19 CG is an open resource for tracking SARS-CoV-2 single-nucleotide variations (SNVs) and lineages while filtering by location, date, gene, and mutation of interest. COVID-19 CG provides significant time, labor, and cost-saving utility to diverse projects on SARS-CoV-2 transmission, evolution, emergence, immune interactions, diagnostics, therapeutics, vaccines, and intervention tracking. Here, we describe case studies in which users can interrogate (1) SNVs in the SARS-CoV-2 Spike receptor binding domain (RBD) across different geographic regions to inform the design and testing of therapeutics, (2) SNVs that may impact the sensitivity of commonly used diagnostic primers, and (3) the recent emergence of a dominant lineage harboring an S477N RBD mutation in Australia. To accelerate COVID-19 research and public health efforts, COVID-19 CG will be continually upgraded with new features for users to quickly and reliably pinpoint mutations as the virus evolves throughout the pandemic and in response to therapeutic and public health interventions.

19.
Nat Methods ; 17(5): 541-550, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32313222

RESUMEN

Recombinant adeno-associated viruses (rAAVs) are efficient gene delivery vectors via intravenous delivery; however, natural serotypes display a finite set of tropisms. To expand their utility, we evolved AAV capsids to efficiently transduce specific cell types in adult mouse brains. Building upon our Cre-recombination-based AAV targeted evolution (CREATE) platform, we developed Multiplexed-CREATE (M-CREATE) to identify variants of interest in a given selection landscape through multiple positive and negative selection criteria. M-CREATE incorporates next-generation sequencing, synthetic library generation and a dedicated analysis pipeline. We have identified capsid variants that can transduce the central nervous system broadly, exhibit bias toward vascular cells and astrocytes, target neurons with greater specificity or cross the blood-brain barrier across diverse murine strains. Collectively, the M-CREATE methodology accelerates the discovery of capsids for use in neuroscience and gene-therapy applications.


Asunto(s)
Encéfalo/virología , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos/genética , Integrasas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Proteínas de la Cápside/genética , Femenino , Terapia Genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Tropismo Viral
20.
Front Neuroanat ; 13: 93, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849618

RESUMEN

Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...