Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 11(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37888688

RESUMEN

Finding new marketable mosquito repellents is a complex and time-consuming process that can be optimized via modelling. In this context, a SAR (Structure-Activity Relationship) model was designed from a set of 2171 molecules whose actual repellent activity against Aedes aegypti was available. Information-rich descriptors were used as input neurons of a three-layer perceptron (TLP) to compute the models. The most interesting classification model was a 20/6/2 TLP showing 94% and 89% accuracy on the training set and test set, respectively. A total of 57 other artificial neural network models based on the same architecture were also computed. This allowed us to consider all chemicals both as training and test set members in order to better interpret the results obtained with the selected model. Most of the wrong predictions were explainable. The 20/6/2 TLP model was then used for predicting the potential repellent activity of new molecules. Among them, two were successfully evaluated in vivo.

2.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36675897

RESUMEN

Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (π = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.

3.
Microbiol Resour Announc ; 11(12): e0055422, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36374103

RESUMEN

Here, we report the draft genome sequence and annotation of the yeast Candida railenensis strain CLIB 1423. The assembly consists of 57 nuclear scaffolds and 1 complete mitochondrial chromosome, for a total of 13.8 Mb (N50, 0.54 Mb; L50, 9). The annotation contains 6,013 coding DNA sequences (CDSs) (BUSCO completeness, 99.6%).

4.
Genome Biol Evol ; 14(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106561

RESUMEN

Recent studies have suggested that species of the Kazachstania genus may be interesting models of yeast domestication. Among these, Kazachstania barnettii has been isolated from various microbially transformed foodstuffs such as sourdough bread and kefir. In the present work, we sequence, assemble, and annotate the complete genomes of two K. barnettii strains: CLIB 433, being one of the two reference strains for K. barnettii that was isolated as a spoilage organism in soft drink, and CLIB 1767, recently isolated from artisan bread-making sourdough. Both assemblies are of high quality with N50 statistics greater than 1.3 Mb and BUSCO score greater than 99%. An extensive comparison of the two obtained genomes revealed very few differences between the two K. barnettii strains, considering both genome structure and gene content. The proposed genome assemblies will constitute valuable references for future comparative genomic, population genomic, or transcriptomic studies of the K. barnettii species.


Asunto(s)
Saccharomycetales , Pan , Fermentación , Saccharomycetales/genética , Levaduras
5.
Food Microbiol ; 98: 103790, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33875218

RESUMEN

The metabolism of ferulic acid (FA) was studied during fermentation with different species and strains of lactic acid bacteria (LAB) and yeasts, in synthetic sourdough medium. Yeast strains of Kazachstania humilis, Kazachstania bulderi, and Saccharomyces cerevisiae, as well as lactic acid bacteria strains of Fructilactobacillus sanfranciscensis, Lactiplantibacillus plantarum, Lactiplantibacillus xiangfangensis, Levilactobacillus hammesii, Latilactobacillus curvatus and Latilactobacillus sakei were selected from French natural sourdoughs. Fermentation in presence or absence of FA was carried out in LAB and yeasts monocultures, as well as in LAB/yeast co-cultures. Our results indicated that FA was mainly metabolized into 4-vinylguaiacol (4-VG) by S. cerevisiae strains, and into dihydroferulic acid (DHFA) and 4-VG in the case of LAB. Interactions of LAB and yeasts led to the modification of FA metabolism, with a major formation of DHFA, even by the strains that do not produce it in monoculture. Interestingly, FA was almost completely consumed by the F. sanfranciscensis bFs17 and K. humilis yKh17 pair and converted into DHFA in 89.5 ± 19.6% yield, while neither bFs17, nor yKh17 strains assimilated FA in monoculture.


Asunto(s)
Pan/análisis , Ácidos Cumáricos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triticum/microbiología , Pan/microbiología , Ácidos Cumáricos/análisis , Fermentación , Harina/análisis , Harina/microbiología , Microbiología de Alimentos , Saccharomycetales/química , Triticum/metabolismo
6.
Toxics ; 8(4)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212791

RESUMEN

Pyriproxyfen is a juvenile hormone mimic used extensively worldwide to fight pests in agriculture and horticulture. It also has numerous applications as larvicide in vector control. The molecule disrupts metamorphosis and adult emergence in the target insects. The same types of adverse effects are expected on non-target insects. In this context, the objective of this study was to evaluate the existing information on the toxicity of pyriproxyfen on the honey bee (Apis mellifera) and non-Apis bees (bumble bees, solitary bees, and stingless bees). The goal was also to identify the gaps necessary to fill. Thus, whereas the acute and sublethal toxicity of pyriproxyfen against A. mellifera is well-documented, the information is almost lacking for the non-Apis bees. The direct and indirect routes of exposure of the non-Apis bees to pyriproxyfen also need to be identified and quantified. More generally, the impacts of pyriproxyfen on the reproductive success of the different bee species have to be evaluated as well as the potential adverse effects of its metabolites.

7.
Genome Biol Evol ; 12(6): 795-807, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302403

RESUMEN

Genome-wide characterization of genetic variants of a large population of individuals within the same species is essential to have a deeper insight into its evolutionary history as well as the genotype-phenotype relationship. Population genomic surveys have been performed in multiple yeast species, including the two model organisms, Saccharomyces cerevisiae and Schizosaccharomyces pombe. In this context, we sought to characterize at the population level the Brettanomyces bruxellensis yeast species, which is a major cause of wine spoilage and can contribute to the specific flavor profile of some Belgium beers. We have completely sequenced the genome of 53 B. bruxellensis strains isolated worldwide. The annotation of the reference genome allowed us to define the gene content of this species. As previously suggested, our genomic data clearly highlighted that genetic diversity variation is related to ploidy level, which is variable in the B. bruxellensis species. Genomes are punctuated by multiple loss-of-heterozygosity regions, whereas aneuploidies as well as segmental duplications are uncommon. Interestingly, triploid genomes are more prone to gene copy number variation than diploids. Finally, the pangenome of the species was reconstructed and was found to be small with few accessory genes compared with S. cerevisiae. The pangenome is composed of 5,409 ORFs (open reading frames) among which 5,106 core ORFs and 303 ORFs that are variable within the population. All these results highlight the different trajectories of species evolution and consequently the interest of establishing population genomic surveys in more populations.


Asunto(s)
Brettanomyces/genética , Variación Genética , Genoma Fúngico , Ploidias , Pérdida de Heterocigocidad , Filogenia , Secuenciación Completa del Genoma
8.
Sci Rep ; 9(1): 13365, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527614

RESUMEN

Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5'-TTNNNNAGGG-3', with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5'-TTAGGG-3'. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.


Asunto(s)
Telomerasa/genética , Proteínas de Unión a Telómeros/genética , Yarrowia/genética , Evolución Biológica , Expansión de las Repeticiones de ADN/genética , Evolución Molecular , Proteínas Fúngicas/metabolismo , ARN/genética , Telomerasa/metabolismo , Telómero/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-30701247

RESUMEN

Here, we report the genome sequence of the oleaginous yeast Yarrowia lipolytica H222. De novo genome assembly shows three main chromosomal rearrangements compared to that of strain E150/CLIB122. This genomic resource will help integrate intraspecies diversity into synthetic biology projects that utilize Yarrowia as a biotechnological chassis for value-added chemical productions.

10.
Sci Rep ; 9(1): 849, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696855

RESUMEN

Since their divergence from Pezizomycotina, the mRNA metabolism of budding yeasts have undergone regressive evolution. With the dramatic loss of introns, a number of quality control mechanisms have been simplified or lost during evolution, such as the exon junction complex (EJC). We report the identification of the core EJC components, Mago, Y14, and eIF4A3, in at least seven Saccharomycotina species, including Yarrowia lipolytica. Peripheral factors that join EJC, either to mediate its assembly (Ibp160 or Cwc22), or trigger downstream processes, are present in the same species, forming an evolutionary package. Co-immunoprecipitation studies in Y. lipolytica showed that Mago and Y14 have retained the capacity to form heterodimers, which successively bind to the peripheral factors Upf3, Aly/REF, and Pym. Phenotypes and RNA-Seq analysis of EJC mutants showed evidence of Y14 and Mago involvement in mRNA metabolism. Differences in unspliced mRNA levels suggest that Y14 binding either interferes with pre-mRNA splicing or retains mRNA in the nucleus before their export and translation. These findings indicate that yeast could be a relevant model for understanding EJC function.


Asunto(s)
Núcleo Celular/metabolismo , Exones/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiología , Evolución Biológica , Dimerización , Unión Proteica , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Front Microbiol ; 10: 2960, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010076

RESUMEN

Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.

12.
Genome Announc ; 6(26)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954910

RESUMEN

We report here the genome sequence of the ascomycetous yeast Torulaspora microellipsoides CLIB 830T A reference genome for this species, which has been found as a donor of genetic material in wine strains of Saccharomyces cerevisiae, will undoubtedly give clues to our understanding of horizontal transfer mechanisms between species in the wine environment.

13.
Sci Rep ; 7(1): 12507, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970528

RESUMEN

The gene YALI0F01562g was identified as an important factor involved in erythritol catabolism of the unconventional yeast Yarrowia lipolytica. Its putative role was identified for the first time by comparative analysis of four Y. lipolytica strains: A-101.1.31, Wratislavia K1, MK1 and AMM. The presence of a mutation that seriously damaged the gene corresponded to inability of the strain Wratislavia K1 to utilize erythritol. RT-PCR analysis of the strain MK1 demonstrated a significant increase in YALI0F01562g expression during growth on erythritol. Further studies involving deletion and overexpression of the selected gene showed that it is indeed essential for efficient erythritol assimilation. The deletion strain Y. lipolytica AMM∆euf1 was almost unable to grow on erythritol as the sole carbon source. When the strain was applied in the process of erythritol production from glycerol, the amount of erythritol remained constant after reaching the maximal concentration. Analysis of the YALI0F01562g gene sequence revealed the presence of domains characteristic for transcription factors. Therefore we suggest naming the studied gene Erythritol Utilization Factor - EUF1.


Asunto(s)
Eritritol/metabolismo , Proteínas Fúngicas/genética , Factores de Transcripción/genética , Yarrowia/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Expresión Génica , Prueba de Complementación Genética , Glicerol/metabolismo , Mutación , Factores de Transcripción/metabolismo , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo
14.
Fungal Genet Biol ; 100: 1-12, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28064038

RESUMEN

Sugar assimilation has been intensively studied in the model yeast S. cerevisiae, and for two decades, it has been clear that the homologous HXT genes, which encode a set of hexose transporters, play a central role in this process. However, in the yeast Yarrowia lipolytica, which is well-known for its biotechnological applications, sugar assimilation is only poorly understood, even though this yeast exhibits peculiar intra-strain differences in fructose uptake: some strains (e.g., W29) are known to be slow-growing in fructose while others (e.g., H222) grow rapidly under the same conditions. Here, we retrieved 24 proteins of the Sugar Porter family from these two strains, and determined that at least six of these proteins can function as hexose transporters in the heterologous host Saccharomyces cerevisiae EBY.VW4000. Transcriptional studies and deletion analysis in Y. lipolytica indicated that two genes, YHT1 and YHT4, are probably the main players in both strains, with a similar role in the uptake of glucose, fructose, and mannose at various concentrations. The other four genes appear to constitute a set of 'reservoir' hexose transporters with an as-yet unclear physiological role. Furthermore, through examining Sugar Porters of the entire Yarrowia clade, we show that they constitute a dynamic family, within which hexose transport genes have been duplicated and lost several times. Our phylogenetic analyses support the existence of at least three distinct evolutionary groups of transporters which allow yeasts to grow on hexoses. In addition to the well-known and widespread Hxt-type transporters (which are not essential in Y. lipolytica), we highlight a second group of transporters, represented by Yht1, which are phylogenetically related to sensors that play a regulatory role in S. cerevisiae, and a third group, represented by Yht4, previously thought to contain only high-affinity glucose transporters related to Hgt1of Kluyveromyces lactis.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas de Transporte de Monosacáridos/genética , Yarrowia/genética , Yarrowia/metabolismo , Transporte Biológico/genética , Fructosa/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Transcripción Genética , Yarrowia/crecimiento & desarrollo
15.
Genome Announc ; 4(5)2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27795258

RESUMEN

Yarrowia lipolytica is an early diverging species of the Saccharomycotina subphylum, which is recognized as a valuable host for many biotechnological applications exploiting its oleaginous capacities. The 20.5-Mb genome of the Polish Y. lipolytica strain A-101 will greatly help decipher the genetic basis of the regulation of its lipid metabolism.

16.
FEMS Yeast Res ; 16(6)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27589939

RESUMEN

In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Galactosa/metabolismo , Redes y Vías Metabólicas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Prueba de Complementación Genética , Genotipo , Regulón , Saccharomyces/clasificación , Vino/microbiología
17.
Genome Res ; 26(7): 918-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27247244

RESUMEN

Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.


Asunto(s)
Ascomicetos/genética , Cromosomas Fúngicos/genética , Evolución Molecular , Reordenamiento Génico , Genoma Fúngico , Modelos Genéticos , Filogenia
18.
Genome Biol Evol ; 8(3): 733-41, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733577

RESUMEN

The gold standard in yeast population genomics has been the model organism Saccharomyces cerevisiae. However, the exploration of yeast species outside the Saccharomyces genus is essential to broaden the understanding of genome evolution. Here, we report the analyses of whole-genome sequences of nineisolates from the recently described yeast species Lachancea quebecensis. The genome of one isolate was assembled and annotated, and the intraspecific variability within L. quebecensis was surveyed by comparing the sequences from the eight other isolates to this reference sequence. Our study revealed that these strains harbor genomes with an average nucleotide diversity of π = 2 × 10(-3) which is slightly lower, although on the same order of magnitude, as that previously determined for S. cerevisiae (π = 4 × 10(-3)). Our results show that even though these isolates were all obtained from a relatively isolated geographic location, the same ecological source, and represent a smaller sample size than is available for S. cerevisiae, the levels of divergence are similar to those observed in this model species. This divergence is essentially linked to the presence of two distinct clusters delineated according to geographic location. However, even with relatively similar ranges of genome divergence, L. quebecensis has an extremely low global phenotypic variance of 0.062 compared with 0.59 previously determined in S. cerevisiae.


Asunto(s)
Evolución Molecular , Genoma Fúngico/genética , Saccharomycetales/genética , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Análisis de Secuencia
19.
Methods Mol Biol ; 1361: 41-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26483014

RESUMEN

The number of fully sequenced genomes of yeasts is dramatically increasing but both structural and functional annotation quality are usually neglected, as most frequently based on automatic annotation transfer tools from reference genomes. RNA sequencing technologies offer the possibility to better characterize yeast transcriptomes and to correct or improve the prediction of mRNA, ncRNA, or miscellaneous RNA. We describe a computational approach to enhance structural annotation of yeast genomes based on RNA-Seq data exploitation. The proposed pipeline is primarily based on read mapping with TopHat2. Mapping outputs are then used for various applications such as: (1) validation of exon-exon junctions of predicted transcripts, (2) definition of new transcribed features, (3) prediction of 3' UTR, and (4) identification of extra features absent from the genome assembly. We strongly encourage curators to proceed to a manual validation and editing of the reference genome. Releasing genomes with high-quality annotation is an important issue, as they will be considered as references for further predictions.


Asunto(s)
Genoma Fúngico , Anotación de Secuencia Molecular/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , ARN/genética , Saccharomyces cerevisiae/genética , Programas Informáticos , Transcriptoma/genética
20.
PLoS One ; 10(11): e0143096, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26580812

RESUMEN

Lipases are currently the subject of intensive studies due to their large range of industrial applications. The Lip2p lipase from the yeast Yarrowia lipolytica (YlLIP2) was recently shown to be a good candidate for different biotechnological applications. Using a combination of comparative genomics approaches based on sequence similarity, synteny conservation, and phylogeny, we constructed the evolutionary scenario of the lipase family for six species of the Yarrowia clade. RNA-seq based transcriptome analysis revealed the primary role of LIP2 homologues in the assimilation of different substrates. Once identified, these YlLIP2 homologues were expressed in Y. lipolytica. The lipase Lip2a from Candida phangngensis was shown to naturally present better activity and enantioselectivity than YlLip2. Enantioselectivity was further improved by site-directed mutagenesis targeted to the substrate binding site. The mono-substituted variant V232S displayed enantioselectivity greater than 200 and a 2.5 fold increase in velocity. A double-substituted variant 97A-V232F presented reversed enantioselectivity, with a total preference for the R-enantiomer.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Lipasa/genética , Filogenia , Transcriptoma , Yarrowia/genética , Secuencia de Aminoácidos , Sitios de Unión , Butiratos/química , Candida/enzimología , Candida/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expresión Génica , Hidrólisis , Microbiología Industrial , Lipasa/química , Lipasa/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato , Sintenía , Yarrowia/clasificación , Yarrowia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...