Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mar Pollut Bull ; 196: 115560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37944270

RESUMEN

Marine coastal waters of Bahrain are under pressure due to human activities and climate change. We used marine monitoring data (2005-2020) from 27 sites to establish baseline conditions and develop standards for assessments of water quality. Five hydrodynamic regions were identified: Oyster Beds, North, West, East, East (Coastal). Data from Oyster Beds sites, likely to be less impacted by human activities, were used to determine baseline conditions. For most parameters, candidate thresholds were based on 50 % and 100 % variation from baseline and 95th percentiles. Comparisons of data against different thresholds showed different outcomes. Overall, results indicate good water quality, with potential concerns in East (Coastal). Trend analyses showed some significant trends in all regions: downward (favourable) for some parameters (e.g. turbidity: North) and upward for others (e.g. nitrate: Oyster Beds, East and East (Coastal)). Future work requires greater understanding around optimum guidelines that protect and mitigate any adverse ecological impacts.


Asunto(s)
Ostreidae , Calidad del Agua , Animales , Humanos , Monitoreo del Ambiente/métodos , Bahrein , Ambiente
2.
Sci Total Environ ; 898: 165505, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451457

RESUMEN

Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: -5 %, holoplankton: -7 % decade-1), except for meroplankton, which increased 12 % decade-1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem.


Asunto(s)
Ecosistema , Plancton , Animales , Mar del Norte , Cadena Alimentaria , Fitoplancton , Zooplancton , Dinámica Poblacional
4.
Mar Pollut Bull ; 166: 112181, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33676108

RESUMEN

Marine ecosystems across the world's largest ocean - the Pacific Ocean - are being increasingly affected by stressors such as pollution, overfishing, ocean acidification, coastal development and warming events coupled with rising sea levels and increasing frequency of extreme weather. These anthropogenic-driven stressors, which operate cumulatively at varying spatial and temporal scales, are leading to ongoing and pervasive degradation of many marine ecosystems in the Pacific Island region. The effects of global warming and ocean acidification threaten much of the region and impact on the socio-cultural, environmental, economic and human health components of many Pacific Island nations. Simultaneously, resilience to climate change is being reduced as systems are overburdened by other stressors, such as marine and land-based pollution and unsustainable fishing. Consequently, it is important to understand the vulnerability of this region to future environmental scenarios and determine to what extent management actions can help protect, and rebuild ecosystem resilience and maintain ecosystem service provision. This Special Issue of papers explores many of these pressures through case studies across the Pacific Island region, and the impacts of individual and cumulative pressures on the condition, resilience and survival of ecosystems and the communities that depend on them. The papers represent original work from across the tropical Pacific oceanscape, an area that includes 22 Pacific Island countries and territories plus Hawaii and the Philippines. The 39 papers within provide insights on anthropogenic pressures and habitat responses at local, national, and regional scales. The themes range from coastal water quality and human health, assessment of status and trends for marine habitats (e.g. seagrass and coral reefs), and the interaction of local pressures (pollution, overfishing) with increasing temperatures and climate variability. Studies within the Special Issue highlight how local actions, monitoring, tourism values, management, policy and incentives can encourage adaptation to anthropogenic impacts. Conclusions identify possible solutions to support sustainable and harmonious environment and social systems in the unique Pacific Island oceanscape.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Explotaciones Pesqueras , Hawaii , Humanos , Concentración de Iones de Hidrógeno , Islas del Pacífico , Océano Pacífico , Filipinas , Agua de Mar
5.
Mar Pollut Bull ; 164: 112087, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33548805

RESUMEN

The Second World War in the Pacific has left a legacy of over 3800 wrecks on the ocean floor. These wrecks contain thousands of tons of oil and pose a risk to the marine environment. Estimates of current corrosion rates show many wrecks are at risk of structural collapse. However, the scale of threat posed by potentially polluting wrecks (PPW) to coastal ecosystems in the Pacific is largely unknown, due to the lack of data to inform risk. This paper presents a strategy aimed to prioritise, manage, and mitigate negative effects of oil spills posed by PPW in the Pacific, using an example in Chuuk Lagoon. Wrecks are assessed and prioritised by means of risk characterisation. Wrecks are surveyed using photogrammetry to assess hull integrity. Finally, recommendations are made for the production of bespoke management plans and risk reduction strategies that work towards safeguarding marine ecosystems and the livelihoods of coastal communities.


Asunto(s)
Ecosistema , Contaminación por Petróleo , Océano Pacífico , Segunda Guerra Mundial
6.
Mar Pollut Bull ; 163: 111951, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33472138

RESUMEN

The resilience of coastal ecosystems and communities to poor environmental and health outcomes is threatened by cumulative anthropogenic pressures. In Kiribati, a developing Pacific Island country where human activities are closely connected with the ocean, both people and environment are particularly vulnerable to coastal pollution. We present a survey of environmental and human health water quality parameters around urban South Tarawa, and an overview of their impacts on the semi-enclosed atoll. Tarawa has significant water quality issues and decisions to guide improvements are hindered by a persistent lack of appropriate and sufficient observations. Our snapshot assessment identifies highest risk locations related to chronic focused and diffuse pollution inputs, and where mixing and dilution with ocean water is restricted. We demonstrate the importance of monitoring in the context of rapidly changing pressures. Our recommendations are relevant to other atoll ecosystems where land-based activities and ocean health are tightly interlinked.


Asunto(s)
Ecosistema , Calidad del Agua , Monitoreo del Ambiente , Humanos , Micronesia , Islas del Pacífico
7.
Mar Pollut Bull ; 160: 111651, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33181931

RESUMEN

Nearshore deterioration of water quality in Pacific coastal waters is a growing problem, associated with increasing urban and industrial sewage discharges, and agricultural runoff. Published water quality studies in the Pacific region are limited in both number and scope, making it difficult to resolve the extent of the issue or quantify the variability of water quality across Pacific islands and countries. This study collected water quality measurements over three years in the coastal waters around the Island of Efate (Vanuatu) with majority of work carried out in Port Vila, its capital. Port Vila is the key urban centre for Vanuatu where the increasing population and pollution inputs are placing substantial pressure on the coastal environment. Highest concentrations of dissolved nutrients and suspended sediments were measured adjacent or near the urban drains that enter the coastal areas along the capital's seafront, highlighting many of the issues around anthropogenic inputs are linked to the increasing urbanisation in Port Vila Bay. We provide baseline data that explores variability of coastal water quality and these types of datasets for Pacific islands are a first step towards facilitating development of long-term monitoring programmes and informing coastal zone management decision making.


Asunto(s)
Urbanización , Calidad del Agua , Agricultura , Monitoreo del Ambiente , Islas del Pacífico , Vanuatu
8.
Glob Chang Biol ; 26(6): 3482-3497, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32237280

RESUMEN

Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional-scale multi-decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long-term fixed station-based time-series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long-term changes, which were coherent across large spatial scales. For example, 'diatom' and 'meroplankton' lifeforms showed strong alignment between surveys and coherent regional-scale trends, with the 1998-2017 decadal average abundance of meroplankton being 2.3 times that of 1958-1967 for CPR samples in the North Sea. This major, shelf-wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore-offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi-decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.


Asunto(s)
Ecosistema , Plancton , Animales , Biodiversidad , Clima , Mar del Norte
9.
J Environ Manage ; 248: 109255, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31352278

RESUMEN

An operational method to assess trends in marine water composition and ecosystem health during flood periods has been developed for the Great Barrier Reef (GBR), Queensland, Australia. This method integrates satellite water colour data with field water quality and ecosystem monitoring data and involves the classification of Moderate-Resolution Imaging Spectroradiometer (MODIS satellite) pixels into six distinct water bodies using a "wet season" colour scale developed specifically for the GBR. Using this information, several monitoring and reporting products have been derived and are operationally implemented into a long-term water quality monitoring program for the GBR. However, MODIS sensors are aging and a long-term monitoring solution is needed. This study reviewed the water colour monitoring products currently used in the GBR. It tested the feasibility to transition these methods from historical MODIS satellite imagery to the new Sentinel-3 satellite of the European Space Agency and from the wet season colour scale to the historical Forel-Ule colour scale, using a freely-distributed Forel Ule (FU) Satellite Toolbox. Monitoring products derived from both satellites and colour scales showed very similar patterns across two case study regions of the GBR, the Wet Tropics and Burdekin marine regions, over the 2017-18 wet season. The results obtained in this study highlighted the potential of using FU Sentinel-3 imagery for the mapping of GBR marine water bodies, including flood conditions. Furthermore, the operational monitoring products and frameworks developed for the GBR are likely to provide valuable foundations for analysis of FU Sentinel-3 data in the future. Such satellite water colour datasets and frameworks will be instrumental to better understand the impact of floods and reduced water clarity on marine ecosystems, as well as to support water quality management and facilitate catchment management policy in the GBR and worldwide.


Asunto(s)
Inundaciones , Calidad del Agua , Australia , Color , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente , Queensland , Agua
10.
Nat Ecol Evol ; 3(4): 620-627, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858590

RESUMEN

Threats from climate change and other human pressures have led to widespread concern for the future of Australia's Great Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades. Using a composite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease-with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6-17% improvement in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR against the effects of global warming.


Asunto(s)
Arrecifes de Coral , Calidad del Agua , Australia , Cambio Climático
11.
Ecology ; 100(2): e02574, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30645776

RESUMEN

This data compilation synthesizes 36 static environmental and spatial variables, and temporally explicit modeled estimates of three major disturbances to coral cover on the Great Barrier Reef (GBR): (1) coral bleaching, (2) tropical cyclones, and (3) outbreaks of the coral-eating crown-of-thorns starfish Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° × 0.01° ~ 1 × 1 km) for reef locations along the GBR, containing 15,928 pixels and excluding the northernmost sections (<12° S) where empirical data were sparse. This compilation provides a consistent and high-resolution characterization of the abiotic environment and disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development of complex ecosystem models. Static estimates of environmental variables (e.g., depth, bed shear stress, average temperature, temperature variation) originally developed by the Commonwealth of Australia's Environment Research Facility (CERF) Marine Biodiversity Hub were provided by Geoscience Australia. Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf. solaris), predicted from proxy indicators (e.g., degree heating weeks [DHW] as a proxy for bleaching severity), or explicitly modeled (e.g., wave height model for each cyclone). This data set synthesizes some of the most recent advances in remote sensing and modeling of environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that should be expanded through future research. The characterization of abiotic and disturbance regimes presented here represent an essential tool for the development of complex regional scale models of the GBR; preventing redundancy between working groups and promoting collaboration, innovation, and consistency. When using the data set, we kindly request that you cite this article and/or the articles cited in the reference section, recognizing the work that went into compiling the data together and the original authors' willingness to make it publicly available.

12.
Mar Pollut Bull ; 133: 30-43, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30041318

RESUMEN

Dissolved inorganic nitrogen (DIN) runoff from Great Barrier Reef (GBR) catchments is a threat to coral reef health. Several initiatives address this threat, including the Australian Government's Reef 2050 Plan. However, environmental decision makers face an unsolved prioritization challenge: determining the exposure of reefs to DIN from individual rivers. Here, we use virtual river tracers embedded within a GBR-wide hydrodynamic model to resolve the spatial and temporal dynamics of 16 individual river plumes during three wet seasons (2011-2013). We then used in-situ DIN observations to calibrate tracer values, allowing us to estimate the contribution of each river to reef-scale DIN exposure during each season. Results indicate that the Burdekin, Fitzroy, Tully and Daintree rivers pose the greatest DIN exposure risk to coral reefs during the three seasons examined. Results were used to demonstrate a decision support framework that combines reef exposure risk with river dominance (threat diversity).


Asunto(s)
Arrecifes de Coral , Nitrógeno/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Australia , Monitoreo del Ambiente , Estaciones del Año , Movimientos del Agua
13.
Sci Adv ; 4(7): eaar6127, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30035217

RESUMEN

Corals of the Great Barrier Reef (GBR) have declined over the past 30 years. While reef state depends on the balance between disturbance and recovery, most studies have focused on the effects of disturbance on reef decline. We show that coral recovery rates across the GBR declined by an average of 84% between 1992 and 2010. Recovery was variable: Some key coral types had close to zero recovery by the end of that period, whereas some reefs exhibited high recovery. Our results indicate that coral recovery is sensitive to chronic but manageable pressures, and is suppressed for several years following acute disturbances. Loss of recovery capacity was partly explained by the cumulative effects of chronic pressures including water quality, warming, and sublethal effects of acute disturbances (cyclones, outbreaks of crown-of-thorns starfish, and coral bleaching). Modeled projections indicate that recovery rates can respond rapidly to reductions in acute and chronic stressors, a result that is consistent with fast recovery observed on some reefs in the central and southern GBR since the end of the study period. A combination of local management actions to reduce chronic disturbances and global action to limit the effect of climate change is urgently required to sustain GBR coral cover and diversity.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Animales , Australia , Cambio Climático , Conservación de los Recursos Naturales , Océanos y Mares , Calidad del Agua
14.
J Environ Manage ; 213: 451-466, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29510367

RESUMEN

Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2 = 0.5, p < 0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2 = 0.8, p < 0.01, 'greenish flood waters', r2 = 0.5, p < 0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4 mg L-1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR.


Asunto(s)
Arrecifes de Coral , Ecosistema , Calidad del Agua , Australia , Monitoreo del Ambiente , Queensland , Estaciones del Año
15.
Glob Chang Biol ; 24(5): 1978-1991, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29420869

RESUMEN

Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown-of-thorns starfish (COTS), nutrients from river run-off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017-2050) indicate significant potential for coral recovery in the near-term, relative to current state, followed by climate-driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business-as-usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate-driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR-wide reef performance will decline 27%-74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions.


Asunto(s)
Antozoos , Cambio Climático , Arrecifes de Coral , Calidad del Agua , Tiempo (Meteorología) , Animales , Australia , Presión
18.
Exp Physiol ; 101(12): 1477-1491, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27676233

RESUMEN

NEW FINDINGS: What is the central question of this study? Does crosstalk exist between leptin and interleukin-6 in colonic enteric neurons, and is this a contributory factor in gastrointestinal dysfunction associated with irritable bowel syndrome? What is the main finding and its importance? Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague-Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.


Asunto(s)
Colon/efectos de los fármacos , Colon/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Leptina/farmacología , Adolescente , Adulto , Anciano , Animales , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Síndrome del Colon Irritable/metabolismo , Masculino , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Adulto Joven
19.
Sci Data ; 3: 160043, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27328409

RESUMEN

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Asunto(s)
Bases de Datos Factuales , Fitoplancton , Australia , Biomasa , Cambio Climático , Ecosistema , Eutrofización
20.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880842

RESUMEN

Marine protected areas can prevent over-exploitation, but their effect on marine diseases is less clear. We examined how marine reserves can reduce diseases affecting reef-building corals following acute and chronic disturbances. One year after a severe tropical cyclone, corals inside reserves had sevenfold lower levels of disease than those in non-reserves. Similarly, disease prevalence was threefold lower on reserve reefs following chronic exposure to terrestrial run-off from a degraded river catchment, when exposure duration was below the long-term site average. Examination of 35 predictor variables indicated that lower levels of derelict fishing line and injured corals inside reserves were correlated with lower levels of coral disease in both case studies, signifying that successful disease mitigation occurs when activities that damage reefs are restricted. Conversely, reserves were ineffective in moderating disease when sites were exposed to higher than average levels of run-off, demonstrating that reductions in water quality undermine resilience afforded by reserve protection. In addition to implementing protected areas, we highlight that disease management efforts should also target improving water quality and limiting anthropogenic activities that cause injury.


Asunto(s)
Antozoos/microbiología , Conservación de los Recursos Naturales/métodos , Animales , Arrecifes de Coral , Interacciones Huésped-Patógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...