Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Genet Metab Rep ; 31: 100860, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782617

RESUMEN

Background: Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a rare inherited disease caused by pathogenic variants of HADHA gene. Along with signs common to fatty acid oxidation defects (FAOD), specific retina and heart alterations are observed. Because long-chain fatty acid oxidation is selectively affected, supplementations with short/medium-chain fats represent energetic sources bypassing the enzymatic blockade. Here, we report on an atypical presentation of the disease. Methods: Clinical features were described with medical explorations including ophthalmic and cardiac examination. Biological underlying defects were investigated by measurements of biochemical metabolites and by fluxomic studies of mitochondrial ß-oxidation. Whole exome sequencing and molecular validation of variants confirmed the diagnosis. Results: The patient has developed at nine years an unlabeled maculopathy, and at 28 years, an acute cardiac decompensation without any premise. Blood individual acylcarnitine analysis showed a rise in hydroxylated long-chain fatty acids and fluxomic studies validated enzyme blockade consistent with LCHADD. Genetic analysis revealed the common p.(Glu510Gln) variant in HADHA, in trans with a novel variant c.1108G > A, p.(Gly370Arg) located in the NAD binding domain. Patient pathology was responsive to triheptanoin supplementation. Conclusion: This atypical LCHADD form report should encourage the early assessment of biochemical and genetic testing as a specific management is recommended (combination with fast avoidance, low fat-high carbohydrate diet, medium-even-chain triglycerides or triheptanoin supplementation).

2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457110

RESUMEN

Biallelic gene defects in MFSD8 are not only a cause of the late-infantile form of neuronal ceroid lipofuscinosis, but also of rare isolated retinal degeneration. We report clinical and genetic data of seven patients compound heterozygous or homozygous for variants in MFSD8, issued from a French cohort with inherited retinal degeneration, and two additional patients retrieved from a Swiss cohort. Next-generation sequencing of large panels combined with whole-genome sequencing allowed for the identification of twelve variants from which seven were novel. Among them were one deep intronic variant c.998+1669A>G, one large deletion encompassing exon 9 and 10, and a silent change c.750A>G. Transcript analysis performed on patients' lymphoblastoid cell lines revealed the creation of a donor splice site by c.998+1669A>G, resulting in a 140 bp pseudoexon insertion in intron 10. Variant c.750A>G produced exon 8 skipping. In silico and in cellulo studies of these variants allowed us to assign the pathogenic effect, and showed that the combination of at least one severe variant with a moderate one leads to isolated retinal dystrophy, whereas the combination in trans of two severe variants is responsible for early onset severe retinal dystrophy in the context of late-infantile neuronal ceroid lipofuscinosis.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Distrofias Retinianas , Exones/genética , Homocigoto , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Distrofias Retinianas/genética
3.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203883

RESUMEN

Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Enfermedades Hereditarias del Ojo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación/genética , Distrofias Retinianas/genética , Adulto , Anciano , Niño , Puntos de Rotura del Cromosoma , Simulación por Computador , Distrofias de Conos y Bastones/fisiopatología , Variaciones en el Número de Copia de ADN/genética , Electrorretinografía , Enfermedades Hereditarias del Ojo/fisiopatología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Distrofias Retinianas/fisiopatología
4.
Genet Med ; 22(7): 1235-1246, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307445

RESUMEN

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Asunto(s)
Degeneración Macular , Transcriptoma , Transportadoras de Casetes de Unión a ATP/genética , Genómica , Humanos , Intrones , Degeneración Macular/genética , Mutación , Linaje , Enfermedad de Stargardt
5.
Hum Mutat ; 40(10): 1749-1759, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31212395

RESUMEN

PURPOSE: Stargardt disease (STGD1) is caused by biallelic mutations in ABCA4, but many patients are genetically unsolved due to insensitive mutation-scanning methods. We aimed to develop a cost-effective sequencing method for ABCA4 exons and regions carrying known causal deep-intronic variants. METHODS: Fifty exons and 12 regions containing 14 deep-intronic variants of ABCA4 were sequenced using double-tiled single molecule Molecular Inversion Probe (smMIP)-based next-generation sequencing. DNAs of 16 STGD1 cases carrying 29 ABCA4 alleles and of four healthy persons were sequenced using 483 smMIPs. Thereafter, DNAs of 411 STGD1 cases with one or no ABCA4 variant were sequenced. The effect of novel noncoding variants on splicing was analyzed using in vitro splice assays. RESULTS: Thirty-four ABCA4 variants previously identified in 16 STGD1 cases were reliably identified. In 155/411 probands (38%), two causal variants were identified. We identified 11 deep-intronic variants present in 62 alleles. Two known and two new noncanonical splice site variants showed splice defects, and one novel deep-intronic variant (c.4539+2065C>G) resulted in a 170-nt mRNA pseudoexon insertion (p.[Arg1514Lysfs*35,=]). CONCLUSIONS: smMIPs-based sequence analysis of coding and selected noncoding regions of ABCA4 enabled cost-effective mutation detection in STGD1 cases in previously unsolved cases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Análisis Mutacional de ADN/métodos , Intrones , Sondas Moleculares , Mutación , Enfermedad de Stargardt/diagnóstico , Enfermedad de Stargardt/genética , Alelos , Biología Computacional , Exones , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Alemania , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Linaje , Empalme del ARN
6.
PLoS One ; 11(2): e0149426, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26900683

RESUMEN

BACKGROUND: Actually, about 2000 sequence variations have been documented in the CFTR gene requiring extensive and multi-step genetic testing in the diagnosis of cystic fibrosis and CFTR-related disorders. We present a two phases study, with validation and performance monitoring, of a single experiment methodology based on multiplex PCR and high throughput sequencing that allows detection of all variants, including large rearrangements, affecting the coding regions plus three deep intronic loci. METHODS: A total of 340 samples, including 257 patients and 83 previously characterized control samples, were sequenced in 17 MiSeq runs and analyzed with two bioinformatic pipelines in routine diagnostic conditions. We obtained 100% coverage for all the target regions in every tested sample. RESULTS: We correctly identified all the 87 known variants in the control samples and successfully confirmed the 62 variants identified among the patients without observing false positive results. Large rearrangements were identified in 18/18 control samples. Only 17 patient samples showed false positive signals (6.6%), 12 of which showed a borderline result for a single amplicon. We also demonstrated the ability of the assay to detect allele specific dropout of amplicons when a sequence variation occurs at a primer binding site thus limiting the risk for false negative results. CONCLUSIONS: We described here the first NGS workflow for CFTR routine analysis that demonstrated equivalent diagnostic performances compared to Sanger sequencing and multiplex ligation-dependent probe amplification. This study illustrates the advantages of NGS in term of scalability, workload reduction and cost-effectiveness in combination with an improvement of the overall data quality due to the simultaneous detection of SNVs and large rearrangements.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Análisis Mutacional de ADN/métodos , Pruebas Genéticas/métodos , Humanos , Análisis de Secuencia de ADN , Flujo de Trabajo
7.
Am J Ophthalmol ; 159(2): 302-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25447119

RESUMEN

PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN: Retrospective clinical and molecular genetic study. METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed.


Asunto(s)
Mutación , Periferinas/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Anciano , Western Blotting , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Angiografía con Fluoresceína , Francia/epidemiología , Expresión Génica , Ligamiento Genético , Genotipo , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Biología Molecular , Linaje , Prevalencia , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/epidemiología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Pruebas del Campo Visual
8.
J Med Genet ; 50(10): 704-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23847141

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Mutación , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/epidemiología , Fenotipo , Prevalencia , Adulto Joven
9.
Mol Biol Rep ; 39(2): 1503-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21617944

RESUMEN

The human Cytochrome P450 4A11 (CYP4A11) is a major ω-hydroxylase involved in the regulation of blood pressure in the kidney through the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid (20-HETE). Previous studies have reported a significant association between the 8590T>C genetic variant of CYP4A11 and hypertension. Interestingly, several population-based studies have reported ethnic differences in the prevalence of hypertension, with the highest prevalence in African populations. The aim of this work was to determine the frequency and inter-ethnic comparison of the CYP4A11 (8590T>C) functional polymorphism, in five new ethnic groups: European (99 French Caucasians), African (36 Gabonese and 50 Senegalese), South American (60 Peruvians) and North African (53 Tunisians) populations, using polymerase chain reaction-single strand conformational polymorphism and sequencing strategies. We confirmed that the CYP4A11 (8590T>C) functional polymorphism exhibits inter-ethnic frequency differences. Noteworthy, the highest 8590C allele frequency was observed in the Tunisian (30.2%), followed by Senegalese (20%) populations. In addition, the CC genotype was only found in the Gabonese and Tunisian populations (5.6% and 8.4%, respectively). These populations may be of major interest to help to clarify the linkage between hypertension and CYP4A11 (8590T>C) genotype in African populations. These findings provide data for further studies that investigate the potential association of CYP4A11 (8590T>C) variant with an incidence of hypertension genesis in respect of ethnicity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Etnicidad/genética , Variación Genética , Hipertensión/genética , Polimorfismo de Nucleótido Simple/genética , Secuencia de Bases , Cartilla de ADN/genética , Frecuencia de los Genes , Genotipo , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Análisis de Secuencia de ADN
10.
Mol Biol Rep ; 38(8): 5185-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21181270

RESUMEN

Human type II inosine monophosphate dehydrogenase (IMPDH2) is a key enzyme in the purine nucleotide biosynthetic pathway and constitutes a pivotal biological target for immunosuppressant and antiviral drugs. Several Single Nucleotide Polymorphisms (SNP) affecting the IMPDH2 gene sequence have been reported with potential functional relevance and could impact drugs response. We aimed to determine the frequency of three of these polymorphisms, namely g.3375C>T (Leu(263)Phe), c.-95T>G and IVS7+10T>C, in Caucasians, Tunisians, Peruvians and Black Africans (Gabonese and Senegalese). The g.3375C>T and c.-95T>G polymorphisms are rare with a Minor Allele Frequency ≤1.0% in our populations, whereas the third variant, IVS7+10T>C, is more frequent and displays large interethnic variations, with an allelic frequency ranging from 14.6% in the French Caucasian population studied to less than 2% in Black African and Peruvian populations. This ethnic-related data might contribute to a better understanding of the variability in clinical outcome and/or dose adjustments of drugs that are IMPDH inhibitors such as mycophenolic acid.


Asunto(s)
Etnicidad/genética , IMP Deshidrogenasa/genética , Polimorfismo de Nucleótido Simple/genética , Frecuencia de los Genes/genética , Genotipo , Humanos , Tasa de Mutación
11.
Artículo en Inglés | MEDLINE | ID: mdl-20630735

RESUMEN

The human cytochrome P450 2U1 (CYP2U1) has been described as a novel extrahepatic P450. CYP2U1 is a highly conserved gene mainly expressed in brain and thymus, but also at lower levels in kidney, lung or heart. This selective tissue distribution suggests important endogenous functions, in particular in the conversion of arachidonic acid into two bioactive compounds, the 19- and 20-HETE. To investigate the extent of CYP2U1 genetic polymorphism in 70 French individuals, a screening for sequence variations in the 5'-flanking and protein encoding regions was performed using PCR-SSCP and sequencing strategies. Four polymorphisms were identified and correspond to -204C>A and -241T>C in the 5'-flanking region, -37G>A in the 5'-untranslated region, and IVS2-17T>C in the intron 2. The most frequent mutations, -241T>C (59.7%) and IVS2-17T>C (66.0%), did not seem to alter CYP2U1 lung expression. These results suggest that CYP2U1 exhibits few genetic variations and support a probable role in endogenous processes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Regulación Enzimológica de la Expresión Génica/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Polimorfismo Genético , Encéfalo/enzimología , Familia 2 del Citocromo P450 , Femenino , Francia , Humanos , Ácidos Hidroxieicosatetraenoicos/genética , Hidroxilación , Pulmón/enzimología , Masculino , Mutación , Timo/enzimología
12.
Genet Test Mol Biomarkers ; 13(6): 841-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19810816

RESUMEN

Inosine 5'-monophosphate dehydrogenase (IMPDH), which catalyzes a key step in the de novo biosynthesis of guanine nucleotide, is mediated by two highly conserved isoforms, IMPDH1 and IMPDH2. In this study, IMPDH2 genetic polymorphism was investigated in 96 individuals of Caucasian origin. Four single-nucleotide polymorphisms were identified, comprising one previously described single base-pair substitution in the close vicinity of the consensus donor splice site of intron 7 (IVS7+10T>C), and three novel polymorphisms, one silent substitution in exon 9 (c.915C>G), one single base-pair insertion (g.6971_6972insT) within the 3'-untranslated region of the gene, and one substitution located in the promoter region (c.-95T>G) in a transcription factor binding site CRE(A) (cyclic adenosine monophosphate [cAMP] response element). Considering the nature and location of this latter polymorphism, its functional relevance was examined by transfecting HEK293 and Jurkat cell lines with constructs of the related region of IMPDH2/luciferase reporter gene. The c.-95T>G mutation leads to a significant decrease of luciferase activity (HEK293: 55% decrease, p < 0.05; Jurkat: 65% decrease, p < 0.05) compared with the wild-type promoter sequence and, therefore, is likely to determine interindividual differences in IMPDH2 transcriptional regulation. These results might contribute to a better understanding of the variability in clinical outcome and dose adjustments of certain immunosuppressors that are metabolized through the IMPDH pathway or that are IMPDH inhibitors.


Asunto(s)
Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , IMP Deshidrogenasa/genética , Polimorfismo de Nucleótido Simple , Elementos de Respuesta/genética , Sitios de Unión/genética , Regulación de la Expresión Génica , Humanos , Células Jurkat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...