Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Cell Rep Phys Sci ; 5(2)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38645802

Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and ß-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.

2.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526443

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Amyloid beta-Peptides , alpha-Synuclein , alpha-Synuclein/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amyloid/chemistry , Lipids
3.
Langmuir ; 38(33): 10216-10224, 2022 08 23.
Article En | MEDLINE | ID: mdl-35952001

α-Synuclein (aSyn) is a 140 residue long protein present in presynaptic termini of nerve cells. The protein is associated with Parkinson's disease, in which case it has been found to self-assemble into long amyloid fibrils forming intracellular inclusions that are also rich in lipids. Furthermore, its synaptic function is proposed to involve interaction with lipid membranes, and hence, it is of interest to understand aSyn-lipid membrane interactions in detail. In this paper we report on the interaction of aSyn with model membranes in the form of lipid bilayer discs. Using a combination of cryogenic transmission electron microscopy and small-angle neutron scattering, we show that circular discs undergo a significant shape transition after the adsorption of aSyn. When aSyn self-assembles into fibrils, aSyn molecules desorb from the bilayer discs, allowing them to recover to their original shape. Interestingly, the desorption process has an all-or-none character, resulting in a binary coexistence of circular bilayer discs with no adsorbed aSyn and deformed bilayer discs having a maximum amount of adsorbed protein. The observed coexistence is consistent with the recent finding of cooperative aSyn adsorption to anionic lipid bilayers.


Lipid Bilayers , alpha-Synuclein , Amyloid , Lipid Bilayers/chemistry , Neurons/metabolism , alpha-Synuclein/chemistry
4.
Phys Chem Chem Phys ; 24(34): 20336-20347, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-35980136

Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers.


Aspartic Acid , Carboxy-Lyases/metabolism , Serine , Diffusion , Escherichia coli , Ligands , Models, Molecular
5.
NPJ Microgravity ; 8(1): 13, 2022 May 04.
Article En | MEDLINE | ID: mdl-35508463

Biologically active vitamin B6-derivative pyridoxal 5'-phosphate (PLP) is an essential cofactor in amino acid metabolic pathways. PLP-dependent enzymes catalyze a multitude of chemical reactions but, how reaction diversity of PLP-dependent enzymes is achieved is still not well understood. Such comprehension requires atomic-level structural studies of PLP-dependent enzymes. Neutron diffraction affords the ability to directly observe hydrogen positions and therefore assign protonation states to the PLP cofactor and key active site residues. The low fluxes of neutron beamlines require large crystals (≥0.5 mm3). Tryptophan synthase (TS), a Fold Type II PLP-dependent enzyme, crystallizes in unit gravity with inclusions and high mosaicity, resulting in poor diffraction. Microgravity offers the opportunity to grow large, well-ordered crystals by reducing gravity-driven convection currents that impede crystal growth. We developed the Toledo Crystallization Box (TCB), a membrane-barrier capillary-dialysis device, to grow neutron diffraction-quality crystals of perdeuterated TS in microgravity. Here, we present the design of the TCB and its implementation on Center for Advancement of Science in Space (CASIS) supported International Space Station (ISS) Missions Protein Crystal Growth (PCG)-8 and PCG-15. The TCB demonstrated the ability to improve X-ray diffraction and mosaicity on PCG-8. In comparison to ground control crystals of the same size, microgravity-grown crystals from PCG-15 produced higher quality neutron diffraction data. Neutron diffraction data to a resolution of 2.1 Å has been collected using microgravity-grown perdeuterated TS crystals from PCG-15.

6.
Nat Commun ; 13(1): 194, 2022 01 11.
Article En | MEDLINE | ID: mdl-35017516

The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections.


Bacterial Adhesion/genetics , Fucose/metabolism , Lectins/chemistry , Pseudomonas aeruginosa/metabolism , Binding Sites , Calcium/metabolism , Cloning, Molecular , Cross Infection/microbiology , Crystallography, X-Ray , Deuterium/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Fucose/chemistry , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrogen Bonding , Lectins/genetics , Lectins/metabolism , Ligands , Neutrons , Protein Binding , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Water/metabolism
7.
Front Mol Biosci ; 8: 768004, 2021.
Article En | MEDLINE | ID: mdl-34738016

The dense accumulation of α-Synuclein fibrils in neurons is considered to be strongly associated with Parkinson's disease. These intracellular inclusions, called Lewy bodies, also contain significant amounts of lipids. To better understand such accumulations, it should be important to study α-Synuclein fibril formation under conditions where the fibrils lump together, mimicking what is observed in Lewy bodies. In the present study, we have therefore investigated the overall structural arrangements of α-synuclein fibrils, formed under mildly acidic conditions, pH = 5.5, in pure buffer or in the presence of various model membrane systems, by means of small-angle neutron scattering (SANS). At this pH, α-synuclein fibrils are colloidally unstable and aggregate further into dense clusters. SANS intensities show a power law dependence on the scattering vector, q, indicating that the clusters can be described as mass fractal aggregates. The experimentally observed fractal dimension was d = 2.6 ± 0.3. We further show that this fractal dimension can be reproduced using a simple model of rigid-rod clusters. The effect of dominatingly attractive fibril-fibril interactions is discussed within the context of fibril clustering in Lewy body formation.

8.
Nat Commun ; 12(1): 5004, 2021 08 18.
Article En | MEDLINE | ID: mdl-34408154

The endoplasmic reticulum (ER) Hsp70 chaperone BiP is regulated by AMPylation, a reversible inactivating post-translational modification. Both BiP AMPylation and deAMPylation are catalysed by a single ER-localised enzyme, FICD. Here we present crystallographic and solution structures of a deAMPylation Michaelis complex formed between mammalian AMPylated BiP and FICD. The latter, via its tetratricopeptide repeat domain, binds a surface that is specific to ATP-state Hsp70 chaperones, explaining the exquisite selectivity of FICD for BiP's ATP-bound conformation both when AMPylating and deAMPylating Thr518. The eukaryotic deAMPylation mechanism thus revealed, rationalises the role of the conserved Fic domain Glu234 as a gatekeeper residue that both inhibits AMPylation and facilitates hydrolytic deAMPylation catalysed by dimeric FICD. These findings point to a monomerisation-induced increase in Glu234 flexibility as the basis of an oligomeric state-dependent switch between FICD's antagonistic activities, despite a similar mode of engagement of its two substrates - unmodified and AMPylated BiP.


Adenosine Monophosphate/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Adenosine Monophosphate/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Biocatalysis , Dimerization , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Humans , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Protein Processing, Post-Translational
9.
Structure ; 29(9): 1003-1013.e4, 2021 09 02.
Article En | MEDLINE | ID: mdl-33765407

Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in various pathological processes, where they interact with glycans present on the surface of the host cells. These interactions are part of the initial processes of infection of the host and are very important to study at the atomic level. Here, we report the room temperature neutron structures of PLL lectin from Photorhabdus laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand. A detailed structural analysis of the lectin-carbohydrate interactions provides information on the hydrogen bond network, the role of water molecules, and the extent of the CH-π stacking interactions between fucose and the aromatic amino acids in the binding site.


Bacterial Proteins/chemistry , Fucose/chemistry , Lectins/chemistry , Bacterial Proteins/metabolism , Fucose/metabolism , Hydrogen/chemistry , Lectins/metabolism , Photorhabdus/chemistry , Protein Binding
10.
Glycobiology ; 31(2): 151-158, 2021 02 09.
Article En | MEDLINE | ID: mdl-32601663

l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host-pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L-1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.


Escherichia coli/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry
11.
Pathogens ; 9(11)2020 Nov 11.
Article En | MEDLINE | ID: mdl-33187224

Dengue fever is a rapidly emerging vector-borne viral disease with a growing global burden of approximately 390 million new infections per annum. The Dengue virus (DENV) is a flavivirus spread by female mosquitos of the aedes genus, but the mechanism of viral endocytosis is poorly understood at a molecular level, preventing the development of effective transmission blocking vaccines (TBVs). Recently, glycosaminoglycans (GAGs) have been identified as playing a role during initial viral attachment through interaction with the third domain of the viral envelope protein (EDIII). Here, we report a systematic study investigating the effect of a range of biologically relevant GAGs on the structure and oligomeric state of recombinantly generated EDIII. We provide novel in situ biophysical evidence that heparin and chondroitin sulphate C induce conformational changes in EDIII at the secondary structure level. Furthermore, we report the ability of chondroitin sulphate C to bind EDIII and induce higher-order dynamic molecular changes at the tertiary and quaternary structure levels which are dependent on pH, GAG species, and the GAG sulphation state. Lastly, we conducted ab initio modelling of Small Angle Neutron Scattering (SANS) data to visualise the induced oligomeric state of EDIII caused by interaction with chondroitin sulphate C, which may aid in TBV development.

12.
Proc Natl Acad Sci U S A ; 117(12): 6484-6490, 2020 03 24.
Article En | MEDLINE | ID: mdl-32152099

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


Electrons , Metalloproteins/chemistry , Protons , Ascorbate Peroxidases/chemistry , Ascorbate Peroxidases/metabolism , Ascorbic Acid/chemistry , Ascorbic Acid/metabolism , Catalysis , Heme/chemistry , Hydrogen Bonding , Metalloproteins/metabolism , Models, Molecular , Neutron Diffraction , Oxidation-Reduction
13.
J Phys Chem Lett ; 10(8): 1709-1715, 2019 Apr 18.
Article En | MEDLINE | ID: mdl-30897330

The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius Reff = ⟨ Ri3⟩1/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > Reff ( R < Reff) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes.

14.
J Chem Phys ; 148(20): 204905, 2018 May 28.
Article En | MEDLINE | ID: mdl-29865804

This article presents an investigation of the interparticle interactions and dynamics of submicron silica colloids suspended in a bath of motile Escherichia coli bacteria. The colloidal microstructure and dynamics were probed by ultra-small-angle x-ray scattering and multi-speckles x-ray photon correlation spectroscopy, respectively. Both static and hydrodynamic interactions were obtained for different colloid volume fractions and bacteria concentrations as well as when the interparticle interaction potential was modified by the motility buffer. Results suggest that motile bacteria reduce the effective attractive interactions between passive colloids and enhance their dynamics at high colloid volume fractions. The enhanced dynamics under different static interparticle interactions can be rationalized in terms of an effective viscosity of the medium and unified by means of an empirical effective temperature of the system. While the influence of swimming bacteria on the colloid dynamics is significantly lower for small particles, the role of motility buffer on the static and dynamic interactions becomes more pronounced.


Colloids/chemistry , Culture Media/chemistry , Escherichia coli/chemistry , Escherichia coli/physiology , Hydrodynamics , Particle Size , Temperature , Viscosity
15.
J Biol Chem ; 293(14): 5210-5219, 2018 04 06.
Article En | MEDLINE | ID: mdl-29475945

Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes.


Cytochromes c/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/ultrastructure , Cytochromes c/ultrastructure , Electron Transport , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Kinetics , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Neutron Diffraction/methods , Neutrons , Oxidation-Reduction , Protein Structure, Tertiary , Scattering, Small Angle , Structure-Activity Relationship , Thermodynamics
16.
Proc Natl Acad Sci U S A ; 115(4): E601-E609, 2018 01 23.
Article En | MEDLINE | ID: mdl-29317535

Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of IFN-stimulated genes. ISGF3 function depends on selective interaction between IRF9, through its IRF-association domain (IAD), with the coiled-coil domain (CCD) of STAT2. Here, we report the crystal structures of the IRF9-IAD alone and in a complex with STAT2-CCD. Despite similarity in the overall structure among respective paralogs, the surface features of the IRF9-IAD and STAT2-CCD have diverged to enable specific interaction between these family members. We derive a model for the ISGF3 complex bound to an ISRE DNA element and demonstrate that the observed interface between STAT2 and IRF9 is required for ISGF3 function in cells.


Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , STAT2 Transcription Factor/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Janus Kinases/metabolism , Mice , Point Mutation , Protein Domains , STAT2 Transcription Factor/genetics , Signal Transduction
17.
IUCrJ ; 4(Pt 6): 751-757, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-29123677

The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a non-invasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall.

18.
Nat Commun ; 7: 13445, 2016 11 29.
Article En | MEDLINE | ID: mdl-27897163

Catalytic heme enzymes carry out a wide range of oxidations in biology. They have in common a mechanism that requires formation of highly oxidized ferryl intermediates. It is these ferryl intermediates that provide the catalytic engine to drive the biological activity. Unravelling the nature of the ferryl species is of fundamental and widespread importance. The essential question is whether the ferryl is best described as a Fe(IV)=O or a Fe(IV)-OH species, but previous spectroscopic and X-ray crystallographic studies have not been able to unambiguously differentiate between the two species. Here we use a different approach. We report a neutron crystal structure of the ferryl intermediate in Compound II of a heme peroxidase; the structure allows the protonation states of the ferryl heme to be directly observed. This, together with pre-steady state kinetic analyses, electron paramagnetic resonance spectroscopy and single crystal X-ray fluorescence, identifies a Fe(IV)-OH species as the reactive intermediate. The structure establishes a precedent for the formation of Fe(IV)-OH in a peroxidase.


Heme/metabolism , Iron/metabolism , Peroxidases/metabolism , Crystallization , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/metabolism , Electron Spin Resonance Spectroscopy , Neutron Diffraction
19.
Methods Enzymol ; 566: 113-57, 2016.
Article En | MEDLINE | ID: mdl-26791978

Neutron scattering studies provide important information in structural biology that is not accessible using other approaches. The uniqueness of the technique, and its complementarity with X-ray scattering, is greatest when full use is made of deuterium labeling. The ability to produce tailor-made deuterium-labeled biological macromolecules allows neutron studies involving solution scattering, crystallography, reflection, and dynamics to be optimized in a manner that has major impact on the scope, quality, and throughput of work in these areas. Deuteration facilities have now been developed at many neutron centres throughout the world; these are having a crucial effect on neutron studies in the life sciences and on biologically related studies in soft matter. This chapter describes methods that have been developed for the efficient production of deuterium-labeled samples for a wide range of neutron scattering applications. Examples are given that illustrate the use of these samples for each of the main techniques. Perspectives for biological deuterium labeling are discussed in relation to developments at current facilities and those that are planned in the future.


Deuterium/chemistry , Molecular Biology/methods , Neutrons , Scattering, Small Angle , Staining and Labeling/methods , Crystallography , Humans , Solutions/chemistry , X-Ray Diffraction
20.
Cell Rep ; 3(3): 734-46, 2013 Mar 28.
Article En | MEDLINE | ID: mdl-23453971

Tank-binding kinase I (TBK1) plays a key role in the innate immune system by integrating signals from pattern-recognition receptors. Here, we report the X-ray crystal structures of inhibitor-bound inactive and active TBK1 determined to 2.6 Å and 4.0 Å resolution, respectively. The structures reveal a compact dimer made up of trimodular subunits containing an N-terminal kinase domain (KD), a ubiquitin-like domain (ULD), and an α-helical scaffold dimerization domain (SDD). Activation rearranges the KD into an active conformation while maintaining the overall dimer conformation. Low-resolution SAXS studies reveal that the missing C-terminal domain (CTD) extends away from the main body of the kinase dimer. Mutants that interfere with TBK1 dimerization show significantly reduced trans-autophosphorylation but retain the ability to bind adaptor proteins through the CTD. Our results provide detailed insights into the architecture of TBK1 and the molecular mechanism of activation.


Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases/chemistry , Amino Acid Sequence , Animals , Binding Sites , Humans , Molecular Sequence Data , Phosphorylation , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Scattering, Small Angle , X-Ray Diffraction
...