Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Appl Physiol Nutr Metab ; 49(7): 943-955, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518263

RESUMEN

Exercise has long been known for its beneficial effects on insulin sensitivity (IS) and glucose handling with both moderate-intensity continuous (MIC) exercise and resistance exercise (RE) inducing beneficial effects. In recent years, low-load, high-repetition (LLHR) RE has emerged as a strategy to increase muscle mass and strength to levels similar to traditional RE; however, the effects of LLHR RE on glucose handling has yet to be investigated. The purpose of this trial was to compare the acute effects of LLHR RE to MIC exercise on post-exercise glycemic control and insulin sensitivity in males and females. Twenty-four (n = 12/sex) participants completed acute bouts of MIC exercise (30 min at 65% V̇O2peak) and LLHR (3 circuits, 6 exercises/circuit, 25-35 repetitions/exercise/circuit) matched for time with muscle biopsies immediately pre and post exercise and an oral glucose tolerance test (OGTT) 90 min following exercise. Blood glucose concentrations (p = 0.002, ηp 2 = 0.37), glucose AUC (p = 0.002, ηp 2 = 0.35) and max glucose concentration (p = 0.003, ηp 2 = 0.34) were lower during the post exercise OGTT following LLHR RE compared to MIC exercise. There was a main effect of trial on TBC1D1 Ser237 phosphorylation (p = 0.04, ηp 2 = 0.19) such that it was greater following MIC exercise compared to LLHR RE. Furthermore, phosphorylated ACC Ser79 increased following MIC exercise with no change following LLHR RE (p < 0.001, ηp 2 = 0.50). Phosphorylation of PTEN Ser380 was greater in males than females during LLHR RE (p = 0.01, ηp 2 = 0.27). These findings suggest that LLHR RE is a feasible exercise modality to improve post-exercise glycemic control in both males and females. Trial registration number: NCT06217679.


Asunto(s)
Glucemia , Control Glucémico , Resistencia a la Insulina , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Femenino , Masculino , Entrenamiento de Fuerza/métodos , Glucemia/metabolismo , Resistencia a la Insulina/fisiología , Control Glucémico/métodos , Adulto Joven , Adulto , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Ejercicio Físico/fisiología
2.
Med Sci Sports Exerc ; 56(5): 953-962, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181209

RESUMEN

PURPOSE: Sedentary behavior may contribute to increased central wave reflection due to associated peripheral vasoconstriction, yet its impact on central hemodynamics and the mitigating effects of interventional strategies have not been thoroughly investigated. We tested whether standing or seated elliptical breaks alleviate the deleterious effects of prolonged sitting on central wave reflections. METHODS: Eighteen healthy adults (9 9 females, 25 ± 3 yr) completed three 3-h protocols on separate days: uninterrupted sitting, sitting with periodic standing, and sitting with periodic seated elliptical activity. Central wave reflection, central pulse wave velocity, and lower-limb pulse wave velocity were measured before and after each intervention. RESULTS: Central relative wave reflection magnitude (RM) increased during sitting (0.31 ± 0.05 to 0.35 ± 0.05; P < 0.01) but did not change after standing (0.30 ± 0.05 to 0.32 ± 0.04; P = 0.19) or elliptical protocols (0.30 ± 0.05 to 0.30 ± 0.04; P > 0.99). The change in RM during prolonged sitting (ΔRM) was attenuated with elliptical activity (0.04 ± 0.05 vs 0.00 ± 0.03; P = 0.02) but not with periodic standing (0.04 ± 0.04 vs 0.02 ± 0.05; P = 0.54). In addition, augmentation index and central pulse wave velocity increased after sitting (both P < 0.01) and periodic standing (both P < 0.01) but were unchanged after elliptical activity. Lower limb pulse wave velocity did not change after sitting ( P = 0.73) or standing ( P = 0.21) but did decrease after elliptical activity ( P = 0.03). CONCLUSIONS: Prolonged sitting without interruptions increased central wave reflection, whereas elliptical but not standing interruptions were able to ameliorate multiple sitting-induced vascular consequences. More work is required to examine the long-term effectiveness of interruption strategies, as well as the optimal type, frequency, and duration for reducing vascular risk associated with sedentary behaviors.


Asunto(s)
Análisis de la Onda del Pulso , Enfermedades Vasculares , Adulto , Femenino , Humanos , Ejercicio Físico , Posición de Pie , Extremidad Inferior
3.
Phys Ther ; 103(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37669136

RESUMEN

OBJECTIVE: The purpose of this trial is to evaluate the effect of twice-weekly, moderate-to-high intensity progressive resistance training (PRT) for 1 year on lumbar spine bone mineral density (BMD) in individuals with low BMD, compared to attention control. Secondary analyses will examine if resistance training improves other health outcomes; if high intensity is more effective than moderate intensity resistance training for all outcomes; the cost of intervention versus benefit; the willingness to pay; and harms. METHODS: For this study, 324 men or postmenopausal women aged ≥50 years with a femoral neck, total hip, or lumbar spine BMD T-score of ≤-1, or a Fracture Risk Assessment Tool probability of ≥20% for major osteoporotic fracture or ≥ 3% for hip fracture are being recruited to participate in a randomized controlled trial with 1:1:1 randomization. Participants will be stratified by site (3 centers) to twice-weekly, supervised PRT at moderate intensity (about 10 repetitions maximum), to high intensity PRT (≤6 repetitions maximum), or to a home posture and balance exercise program (attention control) for 1 year (resistance training to comparator allocation ratio of 2:1). The primary outcome is lumbar spine BMD via dual-energy X-ray absorptiometry. Secondary outcomes include trabecular bone score, proximal femur and total hip BMD and structure, bone-free and appendicular lean mass, physical functioning, falls, fractures, glucose metabolism, cost per life-year gained, adverse events, and quality of life. Between-group differences will be tested in intention-to-treat and per-protocol analyses using analysis of covariance, chi-square tests, or negative binomial or logistic regression, adjusting for site and baseline values. IMPACT: The Finding the Optimal Resistance Training Intensity For Your Bones trial will support decision making on resistance training for people at risk of fracture.

4.
Am J Physiol Regul Integr Comp Physiol ; 324(6): R720-R734, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939210

RESUMEN

Interval training has been found to lower glucose concentrations and increase insulin sensitivity in males but not in females, which may be due to inherent sex-based differences in metabolism. Twenty-four (12/sex) participants completed a bout of high-intensity interval exercise (HIIE, 10 × 1 min at 90% HRmax) to evaluate whether sex influenced the physiological effects of HIIE on postexercise glycemic control during an oral glucose tolerance test (OGTT). Given that body anthropometrics influence postprandial glucose, data were also expressed as a function of the normalized glucose dose. In addition, we examined whether sex differences in postexercise glycemic control were related to sex differences in muscle metabolism and/or insulin signaling proteins. HIIE increased insulin sensitivity in both sexes as characterized by the Matsuda (P = 0.03, ηp2= 0.20) and HOMA-IR (P = 0.047, ηp2 = 0.17) indices. HIIE also lowered insulin concentration during the OGTT (P = 0.04, ηp2 = 0.18) as compared with control. When normalized for glucose dose relative to lean mass, glucose area under the curve (AUC) was lower in females than in males (P ≤ 0.001, ηp2 = 0.47). TBC1D1 Ser237 phosphorylation increased in males, but not in females, postexercise (P = 0.03, ηp2 = 0.19). There was no difference in total insulin signaling protein content, muscle glycogen utilization, or AMPK activation during exercise between the sexes. These findings indicate that when the glucose dose is normalized for differences in body composition glycemic handling is better in females and that an acute bout of HIIE improves insulin sensitivity equally in healthy males and females.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina , Humanos , Femenino , Masculino , Fosforilación , Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Glucosa/metabolismo , Glucemia/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
5.
Exp Physiol ; 108(4): 636-649, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754374

RESUMEN

NEW FINDINGS: What is the central question of this study? Is the attenuation of the respiratory muscle metaboreflex preserved after detraining? What is the main finding and its importance? Inspiratory muscle training increased respiratory muscle strength and attenuated the respiratory muscle metaboreflex as evident by lower heart rate and blood pressure. After 5 weeks of no inspiratory muscle training (detraining), respiratory muscle strength was still elevated and the metaboreflex was still attenuated. The benefits of inspiratory muscle training persist after cessation of training, and attenuation of the respiratory metaboreflex follows changes in respiratory muscle strength. ABSTRACT: Respiratory muscle training (RMT) improves respiratory muscle (RM) strength and attenuates the RM metaboreflex. However, the time course of muscle function loss after the absence of training or 'detraining' is less known and some evidence suggest the respiratory muscles atrophy faster than other muscles. We sought to determine the RM metaboreflex in response to 5 weeks of RMT and 5 weeks of detraining. An experimental group (2F, 6M; 26 ± 4years) completed 5 weeks of RMT and tibialis anterior (TA) training (each 5 days/week at 50% of maximal inspiratory pressure (MIP) and 50% maximal isometric force, respectively) followed by 5 weeks of no training (detraining) while a control group (1F, 7M; 24 ± 1years) underwent no intervention. Prior to training (PRE), post-training (POST) and post-detraining (DETR), all participants underwent a loaded breathing task (LBT) to failure (60% MIP) while heart rate and mean arterial blood pressure (MAP) were measured. Five weeks of training increased RM (18 ± 9%, P < 0.001) and TA (+34 ± 19%, P < 0.001) strength and both remained elevated after 5 weeks of detraining (MIP-POST vs. MIP-DETR: 154 ± 31 vs. 153 ± 28 cmH2O, respectively, P = 0.853; TA-POST vs. TA-DETR: 86 ± 19 vs. 85 ± 16 N, respectively, P = 0.982). However, the rise in MAP during LBT was attenuated POST (-11 ± 17%, P = 0.003) and DETR (-9 ± 9%, P = 0.007) during the iso-time LBT. The control group had no change in MIP (P = 0.33), TA strength (P = 0.385), or iso-time MAP (P = 0.867) during LBT across all time points. In conclusion, RM and TA have similar temporal strength gains and the attenuation of the respiratory muscle metaboreflex remains after 5 weeks of detraining.


Asunto(s)
Respiración , Músculos Respiratorios , Humanos , Músculos Respiratorios/fisiología , Ejercicios Respiratorios , Músculos Intercostales , Músculo Esquelético , Fuerza Muscular/fisiología
6.
Physiol Rep ; 10(13): e15354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35785485

RESUMEN

Type 2 diabetes (T2D) risk is lower in females than males. It has been reported that females have greater pancreatic 𝛽-cell function than males, which may at least in part contribute to the T2D risk in females. 𝛽-cell function is influenced by exercise training; however, previous trials comparing 𝛽-cell function between the sexes have not included participants matched for training status. Furthermore, the acute effects of different modes of exercise on 𝛽-cell function, and whether sex inherently influences these effects, are largely unexamined. Males and females (12/sex) completed a 120-min oral glucose tolerance test (OGTT) at rest (CON) and following acute bouts of high-intensity interval exercise (HIIE), moderate intensity continuous (MIC) exercise, and low-load high-repetition (LLHR) resistance exercise to assess whether sex inherently influences baseline and/or post-exercise pancreatic function in the absence of pathology. We found no sex differences in basal pancreatic 𝛽-cell function. Females had greater basal insulin clearance following MIC exercise compared to males (p = 0.01) and males tended to have a higher potentiation ratio following HIIE (p = 0.07). Females also had lower glucose sensitivity following MIC exercise compared to HIIE (p = 0.007) and LLHR (p = 0.003). Insulin clearance during the OGTT was greater following HIIE as compared with CON and MIC exercise (p = 0.02). 2-H oral glucose insulin sensitivity was greater following LLHR compared to CON (p = 0.01). Acute bouts of different modes of exercise do not differentially influence 𝛽-cell function but do influence insulin clearance and insulin sensitivity. Therefore, sex and exercise mode interact to differentially influence insulin clearance and glucose sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Glucemia , Ejercicio Físico/fisiología , Femenino , Glucosa , Humanos , Insulina , Resistencia a la Insulina/fisiología , Masculino
8.
J Appl Physiol (1985) ; 130(4): 1247-1258, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33630674

RESUMEN

Muscle disuse rapidly induces insulin resistance (IR). Despite a relationship between intramyocellular lipid (IMCL) content and IR, during muscle-disuse IR develops before IMCL accumulation, suggesting that IMCL are not related to disuse-induced IR. However, recent studies show that it is not total IMCL content, but IMCL size and location that are related to IR. Changes in these IMCL parameters may occur prior to increases in IMCL content, thus contributing to disuse-induced IR. Omega-3 fatty acids may mitigate the effects of disuse on IR by preventing a decline in insulin signaling proteins. Twenty women (age 22 ± 3 yr) received either 5 g·day-1 omega-3 fatty acid or isoenergetic sunflower oil for 4 wk prior to, throughout 2 wk of single-leg immobilization, and during 2 wk of recovery. Changes in IMCL characteristics and insulin signaling proteins were examined in vastus lateralis samples taken before supplementation and immobilization, and following immobilization and recovery. Omega-3 supplementation had no effect. IMCL area density decreased in the subsarcolemmal region during immobilization and recovery (-19% and -56%, respectively, P = 0.009). IMCL size increased in the central intermyofibrillar region during immobilization (43%, P = 0.007), returning to baseline during recovery. PLIN5 and AKT increased during immobilization (87%, P = 0.002; 30%, P = 0.007, respectively). PLIN 5 remained elevated and AKT increased further (15%) during recovery. IRS1, AS160, and GLUT4 decreased during immobilization (-35%, P = 0.001; -44%, P = 0.03; -56%, P = 0.02, respectively), returning to baseline during recovery. Immobilization alters IMCL storage characteristics while negatively affecting unstimulated insulin signaling protein content in young women.NEW & NOTEWORTHY We report that the subcellular storage location of IMCL is altered by limb immobilization, highlighting the need to evaluate IMCL storage location when assessing the effects of disuse on IMCL content. We also found that AKT content increased during immobilization in our female population, contrary to studies in males finding that AKT decreases during disuse, highlighting that men and women may respond differently to disuse and the necessity to include women in all research.


Asunto(s)
Resistencia a la Insulina , Pierna , Adulto , Femenino , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Inmovilización/efectos adversos , Metabolismo de los Lípidos , Lípidos , Masculino , Músculo Esquelético/metabolismo , Músculo Cuádriceps/metabolismo , Adulto Joven
9.
Appl Physiol Nutr Metab ; 46(5): 443-451, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33113337

RESUMEN

Exercise elicits direct benefits to insulin sensitivity but may also indirectly improve glucose uptake by hemodynamic conditioning of the vasculature. The purpose of this study was to examine the modifying effect of 3 different types of exercise on the vascular response to an oral glucose challenge. Twenty healthy adults (9 women, 11 men; aged 23 ± 3 years) completed a standard oral glucose tolerance test (OGTT) at rest, as well as 1.5 hours after moderate continuous cycling exercise (30 min; 65% peak oxygen consumption), high-intensity interval cycling exercise (10 × 1 min at 90% peak heart rate), and lower-load higher-repetition resistance exercise (25-35 repetitions/set, 3 sets). Brachial and superficial femoral artery blood flow, conductance, and oscillatory shear index were measured throughout the OGTT. Regardless of rested state or exercise preconditioning, the OGTT induced reductions in brachial artery blood flow and conductance (p < 0.001), and transient increases in brachial and superficial femoral artery oscillatory shear index and retrograde blood flow (p < 0.01). Continuous cycling and resistance exercise were followed with a small degree of protection against prolonged periods of oscillatory flow. Our findings imply transient peripheral vasoconstriction and decreased limb blood flow during a standard OGTT, for which prior exercise was unable to prevent in healthy adults. Novelty: We investigated the impact of continuous, interval, and resistance exercise on the hemodynamic response to an OGTT. Our findings suggest decreased upper-limb blood flow during an OGTT is not prevented by prior exercise in healthy adults.


Asunto(s)
Prueba de Tolerancia a la Glucosa , Hemodinámica , Acondicionamiento Físico Humano/fisiología , Ciclismo/fisiología , Glucemia/metabolismo , Arteria Braquial/fisiología , Femenino , Arteria Femoral/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Insulina/sangre , Masculino , Óxido Nítrico/sangre , Acondicionamiento Físico Humano/métodos , Flujo Sanguíneo Regional , Entrenamiento de Fuerza , Extremidad Superior/irrigación sanguínea , Vasoconstricción , Adulto Joven
10.
Front Nutr ; 6: 138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555655

RESUMEN

The prevalence of pre-diabetes (PD) and type II diabetes (T2D) has risen dramatically in recent years affecting an estimated 422 million adults worldwide. The risk of T2D increases with age, with the sharpest rise in diagnosis occurring after age 40. With age, there is also a progressive decline in muscle mass starting after the age of 30. The decline in muscle mass and function due to aging is termed sarcopenia and immediately precedes the sharp rise in T2D. The purpose of the current review is to discuss the role of protein to attenuate declines in muscle mass and insulin sensitivity to prevent T2D and sarcopenia in aging adults. The current recommended dietary allowance for protein consumption is set at 0.8 g/kg/day and is based on dated studies on young healthy men and may not be sufficient for older adults. Protein consumption upwards of 1.0-1.5 g/kg/day in older adults is able to induce improvements in glycemic control and muscle mass. Obesity, particularly central or visceral obesity is a major risk factor in the development of PD and T2D. However, the tissue composition of weight loss in older adults includes both lean body mass and fat mass and therefore may have adverse metabolic consequences in older adults who are already at a high risk of lean body mass loss. High protein diets have the ability to increase weight loss while preserving lean body mass therefore inducing "high-quality weight loss," which provides favorable metabolic changes in older adults. High protein diets also induce beneficial outcomes on glycemic markers due to satiety, lowered post-prandial glucose response, increased thermogenesis, and the ability to decrease rates of muscle protein breakdown (MPB). The consumption of dairy specific protein consumption has also been shown to improve insulin sensitivity by improving body composition, enhancing insulin release, accelerating fat oxidation, and stimulating rates of muscle protein synthesis (MPS) in older adults. Exercise, specifically resistance training, also works synergistically to attenuate the progression of PD and T2D by further stimulating rates of MPS thereby increasing muscle mass and inducing favorable changes in glycemic control independent of lean body mass increases.

12.
Appl Physiol Nutr Metab ; 44(8): 805-813, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30702924

RESUMEN

Women and men store lipid differently within the body with men storing more fat in the android region and women storing more fat in the gynoid region. Fat is predominately stored in adipose tissue as triacylglycerides (TG); however, TG are also stored in other tissues including the liver and skeletal muscle. Excess hepatic TG storage, defined as a TG concentration >5% of liver weight and known as nonalcoholic fatty liver disease (NAFLD), is related to the metabolic syndrome. Similarly, elevated skeletal muscle TG, termed intramyocellular lipids (IMCL), are related to insulin resistance in obesity and type II diabetes. Men store more hepatic TG than women and, unsurprisingly, NAFLD is more prevalent in men than women. Women store more IMCL than men, yet type II diabetes risk is not greater, which is likely due to the manner in which women store TG within muscle. Sex-based differences in TG storage between men and women are underpinned by differences in messenger RNA expression, protein content, and enzyme activities of skeletal muscle and hepatic lipid metabolic pathways. Furthermore, women have a greater reliance on lipid during exercise because of upregulation of lipid oxidative pathways. The purpose of this review is to discuss the role of sex in mediating lipid storage and metabolism within skeletal muscle and the liver at rest and during exercise and its relationship with metabolic disease.


Asunto(s)
Hígado/metabolismo , Músculo Esquelético/metabolismo , Triglicéridos/metabolismo , Adulto , Femenino , Humanos , Masculino , Factores Sexuales
13.
J Nutr ; 148(11): 1760-1775, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383278

RESUMEN

Background: Higher-protein (HP) diets are advocated for several reasons, including mitigation of sarcopenia, but their effects on kidney function are unclear. Objective: This meta-analysis was conducted to determine the effect of HP intakes on kidney function in healthy adults. Methods: We conducted a systematic review and meta-analysis of trials comparing HP (≥1.5 g/kg body weight or ≥20% energy intake or ≥100 g protein/d) with normal- or lower-protein (NLP; ≥5% less energy intake from protein/d compared with HP group) intakes on kidney function. Medline and EMBASE databases were searched. Randomized controlled trials comparing the effects of HP with NLP (>4 d duration) intakes on glomerular filtration rate (GFR) in adults without kidney disease were included. Results: A total of 2144 abstracts were reviewed, with 40 articles selected for full-text review; 28 of these were analyzed and included data from 1358 participants. Data were analyzed using random-effects meta-analysis (RevMan 5; The Cochrane Collaboration), meta-regression (STATA; StataCorp), and dose-response analysis (Prism; GraphPad). Analyses were conducted using postintervention (post) GFR and the change in GFR from preintervention to post. The post-only comparison showed a trivial effect for GFR to be higher after HP intakes [standardized mean difference (SMD): 0.19; 95% CI: 0.07, 0.31; P = 0.002]. The change in GFR did not differ between interventions (SMD: 0.11; 95% CI: -0.05, 0.27; P = 0.16). There was a linear relation between protein intake and GFR in the post-only comparison (r = 0.332, P = 0.03), but not between protein intake and the change in GFR (r = 0.184, P = 0.33). The main limitation of the current analysis is the unclear risk of selection bias of the included trials. Conclusions: Postintervention GFR comparisons indicate that HP diets result in higher GFRs; however, when changes in GFR were compared, dietary protein had no effect. Our analysis indicates that HP intakes do not adversely influence kidney function on GFR in healthy adults.


Asunto(s)
Dieta con Restricción de Proteínas , Proteínas en la Dieta/administración & dosificación , Tasa de Filtración Glomerular/efectos de los fármacos , Adulto , Humanos
14.
Am J Physiol Heart Circ Physiol ; 315(5): H1194-H1199, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30074839

RESUMEN

Skeletal muscle is the largest and most important site of capillary-tissue exchange, especially during high-energy demand tasks such as exercise; however, information regarding the role of the microcirculation in maintaining skeletal muscle health is limited. Changes in microcirculatory function, as observed with aging, chronic and cardiovascular diseases, and exercise, likely precede any alterations that arise in larger vessels, although further investigation into these changes is required. One of the main barriers to addressing this knowledge gap is the lack of methodologies for quantifying microvascular function in vivo; the utilization of valid and noninvasive quantification methods would allow the dynamic evaluation of microvascular flow during periods of clinical relevance such as during increased demand for flow (exercise) or decreased demand for flow (disuse). Contrast-enhanced ultrasound (CEUS) is a promising noninvasive technique that has been used for diagnostic medicine and more recently as a complementary research modality to investigate the response of the microcirculation in insulin resistance, diabetes, and aging. To improve the reproducibility of these measurements, our laboratory has optimized the quantification protocol associated with a bolus injection of the contrast agent for research purposes. This brief report outlines the assessment of microvascular flow using the raw time-intensity curve incorporated into gamma variate response modeling. CEUS could be used to compliment any macrovascular assessments to capture a more complete picture of the aging vasculature, and the modified methods presented here provide a template for the general analysis of CEUS within a research setting.


Asunto(s)
Envejecimiento/fisiología , Medios de Contraste/administración & dosificación , Ejercicio Físico/fisiología , Fluorocarburos/administración & dosificación , Microcirculación , Microvasos/diagnóstico por imagen , Músculo Cuádriceps/irrigación sanguínea , Ultrasonografía/métodos , Factores de Edad , Anciano , Velocidad del Flujo Sanguíneo , Humanos , Masculino , Microburbujas , Microvasos/fisiología , Persona de Mediana Edad , Modelos Cardiovasculares , Contracción Muscular , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados
15.
J Nutr ; 148(7): 1088-1095, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901760

RESUMEN

Background: Older adults show a blunted muscle protein synthesis (MPS) response to postprandial hyperaminoacidemia relative to younger adults. Evidence suggests that this anabolic resistance can be overcome by consuming greater quantities of leucine. Objective: The purpose of this trial was to determine whether the addition of leucine to a smaller dose (10 g) of milk proteins would, when compared with a larger dose (25 g) of whey protein isolate (WPI), result in similar increases in acute (hourly) and integrated (daily) myofibrillar protein synthesis (myoPS). Methods: Healthy older (mean ± SD age: 69 ± 1 y) women (n = 11/group) were randomly assigned with the use of a single-blind, parallel-group design to twice-daily consumption of either WPI [25 g WPI (3 g l-leucine)] or leucine (LEU; 10 g milk protein with 3 g total l-leucine) for 6 d. Participants performed unilateral resistance exercise to allow assessment of the impact of the supplement alone and with resistance exercise. We determined acute (13C6-phenylanine) and integrated [using deuterated water (D2O)] rates of myoPS in the fasting (acute), basal (integrated), nonexercised, and exercised states. Results: Acute myoPS increased in both legs in response to LEU (fed: 45%; fed+exercise: 71%; P < 0.001) and WPI (fed: 29%; fed+exercise: 47%; P < 0.001) compared with fasting; the increase was greater with LEU than with WPI in the exercised leg (46%; P = 0.04) but not in the rested leg (P = 0.07). The acute myoPS response was greater in the exercised leg than in the rested leg for both WPI (63%) and LEU (58%) (P < 0.001). Integrated myoPS increased with WPI and LEU in the exercised leg (both 9%; P < 0.001) during supplementation, and with WPI (3%; P = 0.02) but not LEU (2%, P = 0.1) in the rested leg compared with the basal state. Conclusions: A lower-protein (10 compared with 25 g/dose), leucine-matched beverage induced similar increases in acute and integrated myoPS in healthy older women. Lower-protein supplements with added leucine may represent an advantageous approach in older adults to maintain skeletal muscle anabolic sensitivity and attenuate muscle loss; however, further work is needed using longer-term interventions to substantiate these findings. This trial was registered at www.clinicaltrials.gov as NCT02282566.


Asunto(s)
Suplementos Dietéticos/análisis , Leucina/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Anciano , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/síntesis química , Ejercicio Físico , Femenino , Humanos , Leucina/administración & dosificación
16.
J Cachexia Sarcopenia Muscle ; 9(4): 747-754, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29761654

RESUMEN

BACKGROUND: Age-related sarcopenia is accelerated by physical inactivity. Low-load resistance exercise (LLRE) counters inactivity-induced muscle atrophy in older adults, but changes in muscle fibre morphology are unstudied. We aimed to determine the impact of LLRE during short-term inactivity (step-reduction) on muscle fibre size and capillarity as well as satellite cell (SC) content in older skeletal muscle. METHODS: Fourteen older (~71 years) male adults underwent 14 days of step reduction (<1500 steps/day) while performing six sessions of LLRE (~30% maximal strength) with one leg (SR + EX) while the contralateral leg served as an untrained control (SR). Seven healthy ambulatory age-matched male adults (~69 years) served as a comparator group (COM). Muscle biopsies were taken from the vastus lateralis after 14 days, and immunohistochemical analysis was performed to determine muscle fibre cross-sectional area (CSA), myonuclear content, SC content (PAX7+ cells), and total (C:F) and fibre type-specific (C:Fi) capillary-to-fibre ratios. RESULTS: Type I and II fibre CSA was greater in SR + EX compared with SR. Whereas there were no differences across fibre types between SR + EX and CON, type II fibre CSA was significantly lower in SR compared with COM. Type II myonuclear domain was greater in SR + EX compared with COM and SR. Pax7+ cells associated with type I and II fibres were lower in SR compared with SR + EX. Type II PAX7+ cells were also lower in SR compared with COM with a similar trend for type I fibres. There were trends for a lower C:Fi in SR compared with SR + EX for both fibre types with no differences for each compared with COM. CONCLUSIONS: Minimal LLRE during a period of decreased physical activity is associated with greater muscle fibre CSA, SC content, and capillarization. These results support the use of LLRE as an effective countermeasure to inactivity-induced alterations in muscle morphology with age.


Asunto(s)
Expresión Génica , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Células Satélite del Músculo Esquelético/metabolismo , Anciano , Biomarcadores , Biopsia , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo
17.
Am J Clin Nutr ; 107(2): 217-226, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29529146

RESUMEN

Background: Older women may not be consuming enough protein to maintain muscle mass. Augmentation of protein intake with leucine may enhance the muscle protein synthetic response in older women to aid in maintaining muscle mass. Objective: We measured the acute (hourly) and integrated (daily) myofibrillar protein synthesis (myoPS) response to consumption of a high-quality mixed protein beverage compared with an isonitrogenous protein beverage with added leucine. Design: In a parallel design, free-living, healthy older women (aged 65-75 y, n = 11/group) consumed a fixed, weight-maintaining diet with protein at 1.0 g · kg-1 · d-1 and were randomly assigned to twice-daily consumption of either 15 g milk protein beverage containing 4.2 g leucine (LEU) or 15 g mixed protein (milk and soy) beverage containing 1.3 g leucine (CON). Unilateral leg resistance exercise allowed a determination of acute ([13C6]-phenylalanine infusion, hourly rate) and integrated (deuterated water ingestion, daily rate) exercised and rested myoPS responses. Results: Acute myoPS increased in response to feeding in the rested (CON: 13% ± 4%; LEU: 53% ± 5%) and exercised (CON: 30% ± 4%; LEU: 87% ± 7%) leg in both groups, but the increase was greater in LEU (P < 0.001). Integrated myoPS increased during the supplementation period in both legs (rested: 9% ±1%; exercised: 17% ± 2%; P < 0.001) in LEU, but in the exercised leg only (7% ± 2%; P < 0.001) in CON. Conclusions: A 15-g protein-containing beverage with ∼4 g leucine induced greater increases in acute and integrated myoPS than did an isonitrogenous, isoenergetic mixed-protein beverage. Declines in muscle mass in older women may be attenuated with habitual twice-daily consumption of a protein beverage providing 15 g protein and higher (4.2 g/serving) amounts of leucine. This trial was registered at clinicaltrials.gov as NCT02282566.


Asunto(s)
Leucina/administración & dosificación , Proteínas Musculares/fisiología , Entrenamiento de Fuerza , Descanso , Anciano , Aminoácidos/administración & dosificación , Aminoácidos/sangre , Animales , Glucemia/metabolismo , Índice de Masa Corporal , Peso Corporal , Dieta , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Metabolismo Energético , Femenino , Humanos , Insulina/sangre , Leche , Proteínas de la Leche/análisis , Fenilalanina/administración & dosificación , Fenilalanina/sangre , Biosíntesis de Proteínas , Método Simple Ciego , Leche de Soja
18.
Br J Sports Med ; 52(6): 376-384, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28698222

RESUMEN

OBJECTIVE: We performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength. DATA SOURCES: A systematic search of Medline, Embase, CINAHL and SportDiscus. ELIGIBILITY CRITERIA: Only randomised controlled trials with RET ≥6 weeks in duration and dietary protein supplementation. DESIGN: Random-effects meta-analyses and meta-regressions with four a priori determined covariates. Two-phase break point analysis was used to determine the relationship between total protein intake and changes in fat-free mass (FFM). RESULTS: Data from 49 studies with 1863 participants showed that dietary protein supplementation significantly (all p<0.05) increased changes (means (95% CI)) in: strength-one-repetition-maximum (2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and muscle size-muscle fibre cross-sectional area (CSA; 310 µm2 (51, 570)) and mid-femur CSA (7.2 mm2 (0.20, 14.30)) during periods of prolonged RET. The impact of protein supplementation on gains in FFM was reduced with increasing age (-0.01 kg (-0.02,-0.00), p=0.002) and was more effective in resistance-trained individuals (0.75 kg (0.09, 1.40), p=0.03). Protein supplementation beyond total protein intakes of 1.62 g/kg/day resulted in no further RET-induced gains in FFM. SUMMARY/CONCLUSION: Dietary protein supplementation significantly enhanced changes in muscle strength and size during prolonged RET in healthy adults. Increasing age reduces and training experience increases the efficacy of protein supplementation during RET. With protein supplementation, protein intakes at amounts greater than ~1.6 g/kg/day do not further contribute RET-induced gains in FFM.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Fuerza Muscular , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Adulto , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Análisis de Regresión
19.
J Appl Physiol (1985) ; 122(3): 541-548, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742803

RESUMEN

Exercise results in the rapid remodeling of skeletal muscle. This process is underpinned by acute and chronic changes in both gene and protein synthesis. In this short review we provide a brief summary of our current understanding regarding how exercise influences these processes as well as the subsequent impact on muscle protein turnover and resultant shift in muscle phenotype. We explore concepts of ribosomal biogenesis and the potential role of increased translational capacity vs. translational efficiency in contributing to muscular hypertrophy. We also examine whether high-intensity sprinting-type exercise promotes changes in protein turnover that lead to hypertrophy or merely a change in mitochondrial content. Finally, we propose novel areas for future study that will fill existing knowledge gaps in the fields of translational research and exercise science.


Asunto(s)
Adaptación Fisiológica/fisiología , Contracción Muscular/fisiología , Proteínas Musculares/biosíntesis , Músculo Esquelético/fisiología , Biosíntesis de Proteínas/fisiología , Recuperación de la Función/fisiología , Entrenamiento de Fuerza , Animales , Regulación de la Expresión Génica/fisiología , Humanos
20.
Am J Clin Nutr ; 104(6): 1594-1606, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27935521

RESUMEN

BACKGROUND: Leucine co-ingestion with lower-protein (LP)-containing meals may overcome the blunted muscle protein synthetic response to food intake in the elderly but may be effective only in individuals who consume LP diets. OBJECTIVE: We examined the impact of leucine co-ingestion with mixed macronutrient meals on integrated 3-d rates of myofibrillar protein synthesis (MyoPS) in free-living older men who consumed higher protein (HP) (1.2 g · kg-1 · d-1) or LP (0.8 g · kg-1 · d-1) in rested and resistance exercise (REX) conditions. DESIGN: In a crossover design, 20 healthy older men [aged 65-85 y] were randomly assigned to receive LP or HP diets while ingesting a placebo (days 0-2) and Leu supplement (5 g leucine/meal; days 3-5) with their 3 main daily meals. A bout of unilateral REX was performed during the placebo and Leu treatments. Ingested 2H2O and skeletal muscle biopsies were used to measure the 3-d integrated rate of MyoPS during the placebo and Leu treatments in the rested and REX legs. RESULTS: Leucinemia was higher with Leu treatment than with placebo treatment (P < 0.001). MyoPS was similar in LP and HP during both treatments (P = 0.39) but was higher with Leu treatment than with placebo treatment in the rested (pooled mean ± SD: Leu, 1.57% ± 0.11%/d; placebo, 1.48% ± 0.08%/d; main effect of treatment: P < 0.001) and REX (pooled mean: Leu, 1.87% ± 0.09%/d; placebo, 1.71 ± 0.10%/d; main effect of treatment: P < 0.001) legs. CONCLUSIONS: Leu co-ingestion with daily meals enhances integrated MyoPS in free-living older men in rested and REX conditions and is equally effective in older men who consume daily protein intakes greater than or equal to the RDA. This trial was registered at clinicaltrials.gov as NCT02371278.


Asunto(s)
Suplementos Dietéticos , Leucina/administración & dosificación , Miofibrillas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Aminoácidos/sangre , Glucemia/metabolismo , Índice de Masa Corporal , Estudios Cruzados , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ejercicio Físico , Humanos , Insulina/sangre , Masculino , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Periodo Posprandial , Ingesta Diaria Recomendada , Entrenamiento de Fuerza , Descanso , Método Simple Ciego , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...