Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Ethnopharmacol ; 324: 117769, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38219886

ETHNOPHARMACOLOGICAL RELEVANCE: Achyranthes ferruginea (A. ferruginea) Roxb. is a common plant used in traditional medicine in Asia and Africa. It has a variety of local names, including "Gulmanci" in Nigeria, "Dangar" in Pakistan, "Thola" in Ethiopia, and "Roktoshirinchi" in Bangladesh. It is edible and has several ethnomedical uses for a wide range of illnesses, including hysteria, dropsy, constipation, piles, boils, asthma, and shigellosis. However, the neuropharmacological and analgesic potential of A. ferruginea remains uninvestigated. AIM OF THE STUDY: To assess the neuropharmacological and analgesic potential of A. ferruginea through a multifaceted approach encompassing both experimental and computational models. MATERIALS AND METHODS: Methanol was used to extract the leaves of A. ferruginea. It was then fractionated with low to high polar solvents (n-hexane, chloroform, ethyl acetate, and water) to get different fractions, including chloroform fraction (CLF). The study selected CLF at different doses and conducted advanced chemical element and proximate analyses, as well as phytochemical profiling using GC-MS. Toxicological studies were done at 300 µg per rat per day for 14 days. Cholinesterase inhibitory potential was checked using an in-vitro colorimetric assay. Acetic acid-induced writhing (AAWT) and formalin-induced licking tests (FILT) were used to assess anti-nociceptive effects. The forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM), hole board test (HBT), and light and dark box test (LDB) were among the behavioral tests used to assess depression and anxiolytic activity. Network pharmacology-based analysis was performed on selected compounds using the search tool for interacting chemicals-5 (STITCH 5), Swiss target prediction tool, and search tool for the retrieval of interacting genes and proteins (STRING) database to link their role with genes involved in neurological disorders through gene ontology and reactome analysis. RESULTS: Qualitative chemical element analysis revealed the presence of 15 elements, including Na, K, Ca, Mg, P, and Zn. The moisture content, ash value, and organic matter were found to be 11.12, 11.03, and 88.97%, respectively. GC-MS data revealed that the CLF possesses 25 phytoconstituents. Toxicological studies suggested the CLF has no effects on normal growth, hematological and biochemical parameters, or cellular organs after 14 days at 300 µg per rat. The CLF markedly reduced the activity of both acetylcholinesterase and butyrylcholinesterase (IC50: 56.22 and 13.22 µg/mL, respectively). Promising dose-dependent analgesic activity (p < 0.05) was observed in chemically-induced pain models. The TST and FST showed a dose-dependent substantial reduction in immobility time due to the CLF. Treatment with CLF notably increased the number of open arm entries and time spent in the EPM test at doses of 200 and 400 mg/kg b.w. The CLF showed significant anxiolytic activity at 200 mg/kg b.w. in the HBT test, whereas a similar activity was observed at 400 mg/kg b.w. in the EPM test. A notable increase in the amount of time spent in the light compartment was observed in the LDB test by mice treated with CLF, suggesting an anxiolytic effect. A network pharmacology study demonstrated the relationship between the phytochemicals and a number of targets, such as PPARA, PPARG, CHRM1, and HTR2, which are connected to the shown bioactivities. CONCLUSIONS: This study demonstrated the safety of A. ferruginea and its efficacy in attenuating cholinesterase inhibitory activity, central and peripheral pain, anxiety, and depression, warranting further exploration of its therapeutic potential.


Achyranthes , Anti-Anxiety Agents , Rats , Mice , Animals , Anti-Anxiety Agents/adverse effects , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Chloroform , Acetylcholinesterase , Butyrylcholinesterase , Analgesics/adverse effects , Pain/chemically induced , Pain/drug therapy , Nigeria , Pakistan
2.
Chem Sci ; 13(34): 10103-10118, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-36128224

Bacteria organized in biofilms show significant tolerance to conventional antibiotics compared to their planktonic counterparts and form the basis for chronic infections. Biofilms are composites of different types of extracellular polymeric substances that help in resisting several host-defense measures, including phagocytosis. These are increasingly being recognized as a passive virulence factor that enables many infectious diseases to proliferate and an essential contributing facet to anti-microbial resistance. Thus, inhibition and dispersion of biofilms are linked to addressing the issues associated with therapeutic challenges imposed by biofilms. This report is to address this complex issue using a self-assembled guanidinium-Ag(0) nanoparticle (AD-L@Ag(0)) hybrid gel composite for executing a combination therapy strategy for six difficult to treat biofilm-forming and multidrug-resistant bacteria. Improved efficacy was achieved primarily through effective biofilm inhibition and dispersion by the cationic guanidinium ion derivative, while Ag(0) contributes to the subsequent bactericidal activity on planktonic bacteria. Minimum Inhibitory Concentration (MIC) of the AD-L@Ag(0) formulation was tested against Acinetobacter baumannii (25 µg mL-1), Pseudomonas aeruginosa (0.78 µg mL-1), Staphylococcus aureus (0.19 µg mL-1), Klebsiella pneumoniae (0.78 µg mL-1), Escherichia coli (clinical isolate (6.25 µg mL-1)), Klebsiella pneumoniae (clinical isolate (50 µg mL-1)), Shigella flexneri (clinical isolate (0.39 µg mL-1)) and Streptococcus pneumoniae (6.25 µg mL-1). Minimum bactericidal concentration, and MBIC50 and MBIC90 (Minimum Biofilm Inhibitory Concentration at 50% and 90% reduction, respectively) were evaluated for these pathogens. All these results confirmed the efficacy of the formulation AD-L@Ag(0). Minimum Biofilm Eradication Concentration (MBEC) for the respective pathogens was examined by following the exopolysaccharide quantification method to establish its potency in inhibition of biofilm formation, as well as eradication of mature biofilms. These effects were attributed to the bactericidal effect of AD-L@Ag(0) on biofilm mass-associated bacteria. The observed efficacy of this non-cytotoxic therapeutic combination (AD-L@Ag(0)) was found to be better than that reported in the existing literature for treating extremely drug-resistant bacterial strains, as well as for reducing the bacterial infection load at a surgical site in a small animal BALB/c model. Thus, AD-L@Ag(0) could be a promising candidate for anti-microbial coatings on surgical instruments, wound dressing, tissue engineering, and medical implants.

3.
Chem Sci ; 12(7): 2667-2673, 2020 Dec 23.
Article En | MEDLINE | ID: mdl-34164035

Controlled and efficient activation is the crucial aspect of designing an effective prodrug. Herein we demonstrate a proof of concept for a light activatable prodrug with desired organelle specificity. Mertansine, a benzoansamacrolide, is an efficient microtubule-targeting compound that binds at or near the vinblastine-binding site in the mitochondrial region to induce mitotic arrest and cell death through apoptosis. Despite its efficacy even in the nanomolar level, this has failed in stage 2 of human clinical trials owing to the lack of drug specificity and the deleterious systemic toxicity. To get around this problem, a recent trend is to develop an antibody-conjugatable maytansinoid with improved tumor/organelle-specificity and lesser systematic toxicity. Endogenous CO is recognized as a regulator of cellular function and for its obligatory role in cell apoptosis. CO blocks the proliferation of cancer cells and effector T cells, and the primary target is reported to be the mitochondria. We report herein a new mitochondria-specific prodrug conjugate (Pro-DC) that undergoes a photocleavage reaction on irradiation with a 400 nm source (1.0 mW cm-2) to induce a simultaneous release of the therapeutic components mertansine and CO along with a BODIPY derivative (BODIPY(PPH3)2) as a luminescent marker in the mitochondrial matrix. The efficacy of the process is demonstrated using MCF-7 cells and could effectively be visualized by probing the intracellular luminescence of BODIPY(PPH3)2. This provides a proof-of-concept for designing a prodrug for image-guided combination therapy for mainstream treatment of cancer.

...