Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Nutr ; 10: 1146545, 2023.
Article En | MEDLINE | ID: mdl-37139445

Millets are a rich source of many health-promoting nutrients as well as bioactive compounds such as dietary fibers, antioxidants, macro and micronutrients etc., compared to other staple cereals such as rice, wheat and maize. These nutrients play a central role in the world nutritional security. Despite the inbuilt nutritional benefits, the production of millets has witnessed sharp decline owing to taste preferences, keeping quality and challenges associated with food preparation from millets. To sensitize the consumers about the nutritional benefits of foxtail millet, the present study was planned to formulate and nutritionally evaluate eight diversified foxtail millet-based food products namely rusk, kheer, pinni, sattu, vegetable dalia, cookies, bar and papad by replacing commonly used cereals such as wheat and rice. The products prepared from Foxtail millet were found to have high acceptability with mean score of more than 8.00. These diversified food products showed higher protein content ranging from 10.98 to 16.10 g/100 g, with the highest protein found in Foxtail millet kheer (16.01 g/100 g). The resistant starch content and predicted glycemic index (PGI) of these products ranged between 13.67 to 22.61 g/100 g and 46.12 to 57.55, respectively, with the highest resistant starch (22.61 ± 0.69 g/100 g) and lowest PGI (48.42 ± 0.20) found in millet bar. The high resistant starch and low PGI in foxtail millet products suggest that they could serve as an excellent food source suitable for diabetics. The obtained results suggest that all the Foxtail millet-based value-added products have superior nutrient profile and are highly acceptable than the traditional products. Inclusion of these foods in the diets of the population may help in the prevention of malnutrition and type 2 diabetes.

2.
Antioxidants (Basel) ; 10(8)2021 Aug 15.
Article En | MEDLINE | ID: mdl-34439539

Datura, a genus of medicinal herb from the Solanaceae family, is credited with toxic as well as medicinal properties. The different plant parts of Datura sp., mainly D. stramonium L., commonly known as Datura or Jimson Weed, exhibit potent analgesic, antiviral, anti-diarrheal, and anti-inflammatory activities, owing to the wide range of bioactive constituents. With these pharmacological activities, D. stramonium is potentially used to treat numerous human diseases, including ulcers, inflammation, wounds, rheumatism, gout, bruises and swellings, sciatica, fever, toothache, asthma, and bronchitis. The primary phytochemicals investigation on plant extract of Datura showed alkaloids, carbohydrates, cardiac glycosides, tannins, flavonoids, amino acids, and phenolic compounds. It also contains toxic tropane alkaloids, including atropine, scopolamine, and hyoscamine. Although some studies on D. stramonium have reported potential pharmacological effects, information about the toxicity remains almost uncertain. Moreover, the frequent abuse of D. stramonium for recreational purposes has led to toxic syndromes. Therefore, it becomes necessary to be aware of the toxic aspects and the potential risks accompanying its use. The present review aims to summarize the phytochemical composition and pharmacological and toxicological aspects of the plant Datura.

3.
G3 (Bethesda) ; 7(1): 77-86, 2017 01 05.
Article En | MEDLINE | ID: mdl-27821632

Brassica napus introgression lines (ILs), having B-genome segments from B. carinata, were assessed genetically for extent of introgression and phenotypically for siliqua shatter resistance. Introgression lines had 7-9% higher DNA content, were meiotically stable, and had almost normal pollen fertility/seed set. Segment introgressions were confirmed by fluorescent genomic in situ hybridization (fl-GISH), SSR analyses, and SNP studies. Genotyping with 48 B-genome specific SSRs detected substitutions from B3, B4, B6, and B7 chromosomes on 39 of the 69 ILs whereas SNP genotyping detected a total of 23 B-segments (≥3 Mb) from B4, B6, and B7 introgressed into 10 of the 19 (C1, C2, C3, C5, C6, C8, C9, A3, A9, A10) chromosomes in 17 ILs. The size of substitutions varied from 3.0 Mb on chromosome A9 (IL59) to 42.44 Mb on chromosome C2 (IL54), ranging from 7 to 83% of the recipient chromosome. Average siliqua strength in ILs was observed to be higher than that of B. napus parents (2.2-6.0 vs. 1.9-4.0 mJ) while siliqua strength in some of the lines was almost equal to that of the donor parent B. carinata (6.0 vs.7.2 mJ). These ILs, with large chunks of substituted B-genome, can prove to be a useful prebreeding resource for germplasm enhancement in B. napus, especially for siliqua shatter resistance.


Brassica napus/genetics , Genome, Plant/genetics , Hybridization, Genetic , Chromosomes, Plant/genetics , Genotype , In Situ Hybridization, Fluorescence , Phenotype , Plant Breeding , Ploidies , Polymorphism, Single Nucleotide/genetics
...