Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001034

RESUMEN

Detecting cracks in building structures is an essential practice that ensures safety, promotes longevity, and maintains the economic value of the built environment. In the past, machine learning (ML) and deep learning (DL) techniques have been used to enhance classification accuracy. However, the conventional CNN (convolutional neural network) methods incur high computational costs owing to their extensive number of trainable parameters and tend to extract only high-dimensional shallow features that may not comprehensively represent crack characteristics. We proposed a novel convolution and composite attention transformer network (CCTNet) model to address these issues. CCTNet enhances crack identification by processing more input pixels and combining convolution channel attention with window-based self-attention mechanisms. This dual approach aims to leverage the localized feature extraction capabilities of CNNs with the global contextual understanding afforded by self-attention mechanisms. Additionally, we applied an improved cross-attention module within CCTNet to increase the interaction and integration of features across adjacent windows. The performance of CCTNet on the Historical Building Crack2019, SDTNET2018, and proposed DS3 has a precision of 98.60%, 98.93%, and 99.33%, respectively. Furthermore, the training validation loss of the proposed model is close to zero. In addition, the AUC (area under the curve) is 0.99 and 0.98 for the Historical Building Crack2019 and SDTNET2018, respectively. CCTNet not only outperforms existing methodologies but also sets a new standard for the accurate, efficient, and reliable detection of cracks in building structures.

2.
Micromachines (Basel) ; 14(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421062

RESUMEN

Due to globalization in the semiconductor industry, malevolent modifications made in the hardware circuitry, known as hardware Trojans (HTs), have rendered the security of the chip very critical. Over the years, many methods have been proposed to detect and mitigate these HTs in general integrated circuits. However, insufficient effort has been made for hardware Trojans (HTs) in the network-on-chip. In this study, we implement a countermeasure to congeal the network-on-chip hardware design in order to prevent changes from being made to the network-on-chip design. We propose a collaborative method which uses flit integrity and dynamic flit permutation to eliminate the hardware Trojan inserted into the router of the NoC by a disloyal employee or a third-party vendor corporation. The proposed method increases the number of received packets by up to 10% more compared to existing techniques, which contain HTs in the destination address of the flit. Compared to the runtime HT mitigation method, the proposed scheme also decreases the average latency for the hardware Trojan inserted in the flit's header, tail, and destination field up to 14.7%, 8%, and 3%, respectively.

3.
Sensors (Basel) ; 22(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957380

RESUMEN

An expert performs bone fracture diagnosis using an X-ray image manually, which is a time-consuming process. The development of machine learning (ML), as well as deep learning (DL), has set a new path in medical image diagnosis. In this study, we proposed a novel multi-scale feature fusion of a convolution neural network (CNN) and an improved canny edge algorithm that segregate fracture and healthy bone image. The hybrid scale fracture network (SFNet) is a novel two-scale sequential DL model. This model is highly efficient for bone fracture diagnosis and takes less computation time compared to other state-of-the-art deep CNN models. The innovation behind this research is that it works with an improved canny edge algorithm to obtain edges in the images that localize the fracture region. After that, grey images and their corresponding canny edge images are fed to the proposed hybrid SFNet for training and evaluation. Furthermore, the performance is also compared with the state-of-the-art deep CNN models on a bone image dataset. Our results showed that SFNet with canny (SFNet + canny) achieved the highest accuracy, F1-score and recall of 99.12%, 99% and 100%, respectively, for bone fracture diagnosis. It showed that using a canny edge algorithm improves the performance of CNN.


Asunto(s)
Aprendizaje Profundo , Fracturas Óseas , Algoritmos , Fracturas Óseas/diagnóstico por imagen , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
4.
Biomedicines ; 10(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009560

RESUMEN

The electrocardiogram (ECG) provides essential information about various human cardiac conditions. Several studies have investigated this topic in order to detect cardiac abnormalities for prevention purposes. Nowadays, there is an expansion of new smart signal processing methods, such as machine learning and its sub-branches, such as deep learning. These popular techniques help analyze and classify the ECG signal in an efficient way. Our study aims to develop algorithmic models to analyze ECG tracings to predict cardiovascular diseases. The direct impact of this work is to save lives and improve medical care with less expense. As health care and health insurance costs increase in the world, the direct impact of this work is saving lives and improving medical care. We conducted numerous experiments to optimize deep-learning parameters. We found the same validation accuracy value of about 0.95 for both MobileNetV2 and VGG16 algorithms. After implementation on Raspberry Pi, our results showed a small decrease in accuracy (0.94 and 0.90 for MobileNetV2 and VGG16 algorithms, respectively). Therefore, the main purpose of the present research work is to improve, in an easy and cheaper way, real-time monitoring using smart mobile tools (mobile phones, smart watches, connected T-shirts, etc.).

5.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35890796

RESUMEN

The Internet of Vehicles (IoV) is a new paradigm for vehicular networks. Using diverse access methods, IoV enables vehicles to connect with their surroundings. However, without data security, IoV settings might be hazardous. Because of the IoV's openness and self-organization, they are prone to malevolent attack. To overcome this problem, this paper proposes a revolutionary blockchain-enabled game theory-based authentication mechanism for securing IoVs. Here, a three layer multi-trusted authorization solution is provided in which authentication of vehicles can be performed from initial entry to movement into different trusted authorities' areas without any delay by the use of Physical Unclonable Functions (PUFs) in the beginning and later through duel gaming, and a dynamic Proof-of-Work (dPoW) consensus mechanism. Formal and informal security analyses justify the framework's credibility in more depth with mathematical proofs. A rigorous comparative study demonstrates that the suggested framework achieves greater security and functionality characteristics and provides lower transaction and computation overhead than many of the available solutions so far. However, these solutions never considered the prime concerns of physical cloning and side-channel attacks. However, the framework in this paper is capable of handling them along with all the other security attacks the previous work can handle. Finally, the suggested framework has been subjected to a blockchain implementation to demonstrate its efficacy with duel gaming to achieve authentication in addition to its capability of using lower burdened blockchain at the physical layer, which current blockchain-based authentication models for IoVs do not support.


Asunto(s)
Cadena de Bloques , Seguridad Computacional , Teoría del Juego , Internet
6.
Front Public Health ; 10: 892371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35570979

RESUMEN

Machine learning algorithms are excellent techniques to develop prediction models to enhance response and efficiency in the health sector. It is the greatest approach to avoid the spread of hepatitis C, especially injecting drugs, is to avoid these behaviors. Treatments for hepatitis C can cure most patients within 8 to 12 weeks, so being tested is critical. After examining multiple types of machine learning approaches to construct the classification models, we built an AI-based ensemble model for predicting Hepatitis C disease in patients with the capacity to predict advanced fibrosis by integrating clinical data and blood biomarkers. The dataset included a variety of factors related to Hepatitis C disease. The training data set was subjected to three machine-learning approaches and the validated data was then used to evaluate the ensemble learning-based prediction model. The results demonstrated that the proposed ensemble learning model has been observed ad more accurate compared to the existing Machine learning algorithms. The Multi-layer perceptron (MLP) technique was the most precise learning approach (94.1% accuracy). The Bayesian network was the second-most accurate learning algorithm (94.47% accuracy). The accuracy improved to the level of 95.59%. Hepatitis C has a significant frequency globally, and the disease's development can result in irreparable damage to the liver, as well as death. As a result, utilizing AI-based ensemble learning model for its prediction is advantageous in curbing the risks and improving treatment outcome. The study demonstrated that the use of ensemble model presents more precision or accuracy in predicting Hepatitis C disease instead of using individual algorithms. It also shows how an AI-based ensemble model could be used to diagnose Hepatitis C disease with greater accuracy.


Asunto(s)
Inteligencia Artificial , Hepatitis C , Teorema de Bayes , Hepatitis C/diagnóstico , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA