Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 102(1): 18-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31710151

RESUMEN

Picloram is an auxinic herbicide that is widely used for controlling broad leaf weeds. However, its mechanism of transport into plants is poorly understood. In a genetic screen for picloram resistance, we identified three Arabidopsis mutant alleles of PIC30 (PICLORAM RESISTANT30) that are specifically resistant to picolinates, but not to other auxins. PIC30 is a previously uncharacterized gene that encodes a major facilitator superfamily (MFS) transporter. Similar to most members of MFS, PIC30 contains 12 putative transmembrane domains, and PIC30-GFP fusion protein selectively localizes to the plasma membrane. In planta transport assays demonstrate that PIC30 specifically transports picloram, but not indole-3-acetic acid (IAA). Functional analysis of Xenopus laevis oocytes injected with PIC30 cRNA demonstrated PIC30 mediated transport of picloram and several anions, including nitrate and chloride. Consistent with these roles of PIC30, three allelic pic30 mutants are selectively insensitive to picolinate herbicides, while pic30-3 is also defective in chlorate (analogue of nitrate) transport and also shows reduced uptake of 15NO3- . Overexpression of PIC30 fully complements both picloram and chlorate insensitive phenotypes of pic30-3. Despite the continued use of picloram as an herbicide, a transporter for picloram was not known until now. This work provides insight into the mechanisms of plant resistance to picolinate herbicides and also shed light on the possible endogenous function of PIC30 protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Herbicidas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Cloratos/metabolismo , Resistencia a los Herbicidas/genética , Proteínas de Transporte de Membrana/genética , Mutación , Nitratos/metabolismo
2.
Plant Signal Behav ; 13(10): e1514896, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30260266

RESUMEN

SAUR53 is a member of SAUR (Small Auxin-Up RNA) gene family of primary auxin responsive genes. In Arabidopsis, SAUR gene family is represented by 81 genes including two pseudogenes; however, the functions of most of these genes are not fully characterized yet. In the present study, we show that SAUR53 expresses throughout the plant and localizes to both plasma membrane and the nucleus. Unlike most other SAUR genes, expression of SAUR53 is not induced in response to auxin. Ectopic expression of SAUR53 results in the elongation of cells and organs, and also interferes with normal apical hook development by accelerating the hook maintenance phase. Moreover, root growth of SAUR53 overexpression seedlings is significantly insensitive to IAA and 2,4-D, while showing wild-type sensitivity to NAA, suggesting that elevated level of SAUR53 may interfere with normal auxin transport. Collectively, this study indicates that while SAUR53 positively regulates cell and organ elongation, it probably negatively regulates auxin transport in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
3.
PLoS One ; 9(8): e102301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144378

RESUMEN

The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCF(TIR1/AFBs) auxin signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Isoformas de Proteínas/metabolismo , Alelos , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Proteínas de Arabidopsis/genética , Fosfatasas de Especificidad Dual/genética , Isoformas de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Environ Toxicol ; 29(8): 961-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23125163

RESUMEN

We investigated in vitro the potential mutagenic and toxic effects of two clay-based nanoparticles, Cloisite® Na(+) (Cloisite) and halloysite; and multi-walled carbon nanotubes (MWCNT), commonly used in the polymer composite industry. Using the Ames test, the three nanoparticles did not have a true mutagenic effect, although growth of Salmonella enterica var. Typhimurium (S.typhimurium) was diminished at higher nanoparticle concentrations. We investigated the impact of nanoparticles on Escherichia coli and S. typhimurium including oxyR and rpoS mutants, which are susceptible to oxidative stress. The oxyR mutants were inhibited in the presence of nanoparticles, when grown aerobically with light. Toxicity was not observed in the absence of light or during anaerobic growth. E. coli rpoS mutants exhibited some toxicity when cultured with Cloisite and MWCNT only when grown aerobically with light. There was no effect with other nanoparticles, or with S. typhimurium rpoS mutants. MWCNT exhibited a slight toxic effect against Epithelioma papulosum cyprini (EPC) cells only at the highest concentration tested. There was no discernable toxicity to EPC cells caused by the clay nanoparticles. We conclude that clay-based nanoparticles and MWCNT do not exert a mutagenic effect and do not have a general toxic effect across all bacterial species or between prokaryotic and eukaryotic cells. Modest toxicity was only observed in eukaryotic EPC cells against MWCNT at the highest concentration tested. Limited species-specific toxicity to clay based and MWCNT nanoparticles was seen in bacterial strains primarily due to culture conditions and mutations that exacerbate oxidative stress.


Asunto(s)
Silicatos de Aluminio/toxicidad , Daño del ADN , Escherichia coli/efectos de los fármacos , Peces/metabolismo , Nanotubos de Carbono/toxicidad , Estrés Oxidativo , Salmonella typhimurium/efectos de los fármacos , Animales , Línea Celular , Arcilla , Escherichia coli/genética , Salmonella typhimurium/genética , Pruebas de Toxicidad
5.
Plant Cell Rep ; 29(11): 1305-14, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20821213

RESUMEN

Nucleoside diphosphate kinase (NDPK) is involved in the regeneration of nucleoside triphosphates (NTPs) through its phosphotransferase activity via an autophosphorylating histidine residue. Additionally, autophosphorylation of serine and/or threonine residues is documented for NDPKs from various organisms. However, the metabolic significance of serine/threonine phosphorylation has not been well characterized. In this study we report the cloning and characterization of NDPKI from cultured sugarcane (Saccharum officinarum L. line H50-7209) cells, and modulation of serine autophosphorylation of NDPK1 in response to heat-shock (HS). Heat-shock treatment at 40°C for 2 h resulted in a 40% reduction in labeled phosphoserine in NDPK1. This dephosphorylation was accompanied by an increase in NDPK enzyme activity. In contrast, NDPK1 in cultured tobacco (cv. W-38) cells did not show changes in autophosphorylation or increased enzyme activity in response to HS. The mRNA or protein level of NDPK1 did not increase in response to HS. Sugarcane cells sustain the constitutive protein synthesis in addition to heat-shock protein synthesis during HS, while constitutive protein synthesis is significantly reduced in tobacco cells during HS. Thus, HS modulation of NDPK1 activity and serine dephosphorylation in sugarcane cells may represent an important physiological role in maintaining cellular metabolic functions during heat stress.


Asunto(s)
Respuesta al Choque Térmico , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas de Plantas/metabolismo , Saccharum/enzimología , Secuencia de Aminoácidos , Células Cultivadas , Clonación Molecular , ADN Complementario/genética , Datos de Secuencia Molecular , Nucleósido-Difosfato Quinasa/genética , Fosforilación , Proteínas de Plantas/genética , Saccharum/genética , Alineación de Secuencia , Serina/metabolismo , Nicotiana/enzimología , Nicotiana/genética
6.
Proc Natl Acad Sci U S A ; 105(39): 15190-5, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18818305

RESUMEN

Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.


Asunto(s)
Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Cromatografía Liquida/métodos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/aislamiento & purificación , Espectrometría de Masas/métodos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Proteínas de Plantas/agonistas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Relación Estructura-Actividad
7.
Plant J ; 52(1): 114-23, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17655650

RESUMEN

Cullin-RING ubiquitin-protein ligases such as the Skp1, cullin, F-box protein (SCF) have been implicated in many growth and developmental processes in plants. Normal SCF function requires that the CUL1 subunit be post-translationally modified by related to ubiquitin (RUB), a protein related to ubiquitin. This process is mediated by two enzymes: the RUB-activating and RUB-conjugating enzymes. In Arabidopsis, the RUB-activating enzyme is a heterodimer consisting of AXR1 and ECR1. Mutations in the AXR1 gene result in a pleiotropic phenotype that includes resistance to the plant hormone auxin. Here we report that the AXL (AXR1-like) gene also functions in the RUB conjugation pathway. Overexpression of AXL in the axr1-3 background complements the axr1-3 phenotype. Biochemical analysis indicates that AXL overexpression restores CUL1 modification to the wild-type level, indicating that AXR1 and AXL have the same biochemical activity. Although the axl mutant resembles wild-type plants, the majority of axr1 axl-1 double mutants are embryo or seedling lethal. Furthermore, the axl-1 mutation reveals novel RUB-dependent processes in embryo development. We conclude that AXR1 and AXL function redundantly in the RUB conjugating pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Northern Blotting , Cartilla de ADN , ADN Bacteriano , Genes de Plantas , Mutación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Science ; 312(5772): 436-9, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16627744

RESUMEN

Plants and animals activate defenses after perceiving pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin. In Arabidopsis, perception of flagellin increases resistance to the bacterium Pseudomonas syringae, although the molecular mechanisms involved remain elusive. Here, we show that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3. Repression of auxin signaling restricts P. syringae growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Ácidos Indolacéticos/metabolismo , MicroARNs/fisiología , Pseudomonas syringae/patogenicidad , Transducción de Señal , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flagelina/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transformación Genética
9.
Dev Cell ; 9(1): 109-19, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15992545

RESUMEN

The plant hormone auxin has been implicated in virtually every aspect of plant growth and development. Auxin acts by promoting the degradation of transcriptional regulators called Aux/IAA proteins. Aux/IAA degradation requires TIR1, an F box protein that has been shown to function as an auxin receptor. However, loss of TIR1 has a modest effect on auxin response and plant development. Here we show that three additional F box proteins, called AFB1, 2, and 3, also regulate auxin response. Like TIR1, these proteins interact with the Aux/IAA proteins in an auxin-dependent manner. Plants that are deficient in all four proteins are auxin insensitive and exhibit a severe embryonic phenotype similar to the mp/arf5 and bdl/iaa12 mutants. Correspondingly, all TIR1/AFB proteins interact with BDL, and BDL is stabilized in triple mutant plants. Our results indicate that TIR1 and the AFB proteins collectively mediate auxin responses throughout plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Ácidos Indolacéticos/genética , Mutación , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nature ; 435(7041): 441-5, 2005 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-15917797

RESUMEN

The plant hormone auxin regulates diverse aspects of plant growth and development. Recent studies indicate that auxin acts by promoting the degradation of the Aux/IAA transcriptional repressors through the action of the ubiquitin protein ligase SCF(TIR1). The nature of the signalling cascade that leads to this effect is not known. However, recent studies indicate that the auxin receptor and other signalling components involved in this response are soluble factors. Using an in vitro pull-down assay, we demonstrate that the interaction between transport inhibitor response 1 (TIR1) and Aux/IAA proteins does not require stable modification of either protein. Instead auxin promotes the Aux/IAA-SCF(TIR1) interaction by binding directly to SCF(TIR1). We further show that the loss of TIR1 and three related F-box proteins eliminates saturable auxin binding in plant extracts. Finally, TIR1 synthesized in insect cells binds Aux/IAA proteins in an auxin-dependent manner. Together, these results indicate that TIR1 is an auxin receptor that mediates Aux/IAA degradation and auxin-regulated transcription.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Proteínas F-Box/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/aislamiento & purificación , Proteínas Represoras/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Spodoptera , Temperatura , Transcripción Genética/efectos de los fármacos
11.
Plant J ; 40(5): 772-82, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15546359

RESUMEN

Recent studies of auxin response have focused on the functions of three sets of proteins: the auxin (Aux) response factors (ARFs), the Aux/IAAs, and the F-box protein TIR1. The ARF proteins bind DNA and directly activate or repress transcription of target genes while the Aux/IAA proteins repress ARF function. TIR1 is part of a ubiquitin protein ligase required for degradation of Aux/IAA proteins. Here we report the isolation and characterization of a novel mutant of Arabidopsis called axr5-1. Mutant plants are resistant to auxin and display a variety of auxin-related growth defects including defects in root and shoot tropisms. Further, the axr5-1 mutation results in a decrease in auxin-regulated transcription. The molecular cloning of AXR5 revealed that the gene encodes the IAA1 protein, a member of the Aux/IAA family of proteins. AXR5 is expressed throughout plant development consistent with the pleiotropic mutant phenotype. The axr5-1 mutation results in an amino acid substitution in conserved domain II of the protein, similar to gain-of-function mutations recovered in other members of this gene family. Biochemical studies show that IAA1/AXR5 interacts with TIR1 in an auxin-dependent manner. The mutation prevents this interaction suggesting that the mutant phenotype is caused by the accumulation of IAA1/AXR5. Our results provide further support for a model in which most members of the Aux/IAA family are targeted for degradation by SCFTIR1 in response to auxin.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Mutación , Proteínas Nucleares/metabolismo , Fenotipo
13.
Curr Biol ; 13(16): 1418-22, 2003 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12932326

RESUMEN

The plant hormone auxin regulates diverse aspects of plant growth and development. Despite its importance, the mechanisms of auxin action remain poorly understood. In particular, the identities of the auxin receptor and other signaling proteins are unknown. Recent studies have shown that auxin acts by promoting the degradation of a family of transcriptional regulators called the Aux/IAA proteins. These proteins interact with another large family of plant-specific transcription factors called Auxin Response Factors (ARF) and negatively regulate their activity. Auxin stimulates Aux/IAA degradation by promoting the interaction between a ubiquitin protein ligase (E3) called SCF(TIR1) and the Aux/IAA protein. In this report, we demonstrate that auxin promotes the interaction between the Aux/IAA proteins and SCF(TIR1) in a soluble extract free of membranes, indicating that this auxin response is mediated by a soluble receptor. In addition, we show that the response is not dependent on protein phosphorylation or dephosphorylation but rather is prevented by an inhibitor of peptidyl-prolyl isomerases.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sistema Libre de Células , Inhibidores Enzimáticos/farmacología , Naftoquinonas/farmacología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Fosforilación , Proteínas de Plantas/metabolismo , Prolina/química , Estructura Terciaria de Proteína , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Solubilidad , Factores de Transcripción/metabolismo
14.
EMBO J ; 22(13): 3314-25, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12839993

RESUMEN

The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCF(TIR1). Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCF(TIR1) substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.


Asunto(s)
Proteínas de Arabidopsis/genética , Genes de Plantas , Ácidos Indolacéticos/fisiología , Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , ADN Complementario , Datos de Secuencia Molecular , Mutación , Unión Proteica , Ubiquitina-Proteína Ligasas
15.
EMBO J ; 22(8): 1762-70, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682009

RESUMEN

The related-to-ubiquitin (RUB) protein is post-translationally conjugated to the cullin subunit of the SCF (SKP1, Cullin, F-box) class of ubiquitin protein ligases. Although the precise biochemical function of RUB modification is unclear, studies indicate that the modification is important for SCF function. In Arabidopsis, RUB modification of CUL1 is required for normal function of SCF(TIR1), an E3 required for response to the plant hormone auxin. In this report we show that an Arabidopsis protein called RCE1 functions as a RUB-conjugating enzyme in vivo. A mutation in the RCE1 gene results in a phenotype like that of the axr1 mutant. Most strikingly, plants deficient in both RCE1 and AXR1 have an embryonic phenotype similar to mp and bdl mutants, previously shown to be deficient in auxin signaling. Based on these results, we suggest that the RUB-conjugation pathway is required for auxin-dependent pattern formation in the developing embryo. In addition, we show that RCE1 interacts directly with the RING protein RBX1 and is present in a stable complex with SCF. We propose that RBX1 functions as an E3 for RUB modification of CUL1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Cullin , Ligasas/metabolismo , Animales , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclopentanos/metabolismo , Genes Reporteros , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/metabolismo , Ligasas/genética , Mutación , Oxilipinas , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/anatomía & histología , Plantones/fisiología , Ubiquitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA