Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 102(1): 18-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31710151

RESUMEN

Picloram is an auxinic herbicide that is widely used for controlling broad leaf weeds. However, its mechanism of transport into plants is poorly understood. In a genetic screen for picloram resistance, we identified three Arabidopsis mutant alleles of PIC30 (PICLORAM RESISTANT30) that are specifically resistant to picolinates, but not to other auxins. PIC30 is a previously uncharacterized gene that encodes a major facilitator superfamily (MFS) transporter. Similar to most members of MFS, PIC30 contains 12 putative transmembrane domains, and PIC30-GFP fusion protein selectively localizes to the plasma membrane. In planta transport assays demonstrate that PIC30 specifically transports picloram, but not indole-3-acetic acid (IAA). Functional analysis of Xenopus laevis oocytes injected with PIC30 cRNA demonstrated PIC30 mediated transport of picloram and several anions, including nitrate and chloride. Consistent with these roles of PIC30, three allelic pic30 mutants are selectively insensitive to picolinate herbicides, while pic30-3 is also defective in chlorate (analogue of nitrate) transport and also shows reduced uptake of 15NO3- . Overexpression of PIC30 fully complements both picloram and chlorate insensitive phenotypes of pic30-3. Despite the continued use of picloram as an herbicide, a transporter for picloram was not known until now. This work provides insight into the mechanisms of plant resistance to picolinate herbicides and also shed light on the possible endogenous function of PIC30 protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Herbicidas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Cloratos/metabolismo , Resistencia a los Herbicidas/genética , Proteínas de Transporte de Membrana/genética , Mutación , Nitratos/metabolismo
2.
Plant Signal Behav ; 13(10): e1514896, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30260266

RESUMEN

SAUR53 is a member of SAUR (Small Auxin-Up RNA) gene family of primary auxin responsive genes. In Arabidopsis, SAUR gene family is represented by 81 genes including two pseudogenes; however, the functions of most of these genes are not fully characterized yet. In the present study, we show that SAUR53 expresses throughout the plant and localizes to both plasma membrane and the nucleus. Unlike most other SAUR genes, expression of SAUR53 is not induced in response to auxin. Ectopic expression of SAUR53 results in the elongation of cells and organs, and also interferes with normal apical hook development by accelerating the hook maintenance phase. Moreover, root growth of SAUR53 overexpression seedlings is significantly insensitive to IAA and 2,4-D, while showing wild-type sensitivity to NAA, suggesting that elevated level of SAUR53 may interfere with normal auxin transport. Collectively, this study indicates that while SAUR53 positively regulates cell and organ elongation, it probably negatively regulates auxin transport in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
3.
PLoS One ; 9(8): e102301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144378

RESUMEN

The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCF(TIR1/AFBs) auxin signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Isoformas de Proteínas/metabolismo , Alelos , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Proteínas de Arabidopsis/genética , Fosfatasas de Especificidad Dual/genética , Isoformas de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Plant Cell Rep ; 29(11): 1305-14, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20821213

RESUMEN

Nucleoside diphosphate kinase (NDPK) is involved in the regeneration of nucleoside triphosphates (NTPs) through its phosphotransferase activity via an autophosphorylating histidine residue. Additionally, autophosphorylation of serine and/or threonine residues is documented for NDPKs from various organisms. However, the metabolic significance of serine/threonine phosphorylation has not been well characterized. In this study we report the cloning and characterization of NDPKI from cultured sugarcane (Saccharum officinarum L. line H50-7209) cells, and modulation of serine autophosphorylation of NDPK1 in response to heat-shock (HS). Heat-shock treatment at 40°C for 2 h resulted in a 40% reduction in labeled phosphoserine in NDPK1. This dephosphorylation was accompanied by an increase in NDPK enzyme activity. In contrast, NDPK1 in cultured tobacco (cv. W-38) cells did not show changes in autophosphorylation or increased enzyme activity in response to HS. The mRNA or protein level of NDPK1 did not increase in response to HS. Sugarcane cells sustain the constitutive protein synthesis in addition to heat-shock protein synthesis during HS, while constitutive protein synthesis is significantly reduced in tobacco cells during HS. Thus, HS modulation of NDPK1 activity and serine dephosphorylation in sugarcane cells may represent an important physiological role in maintaining cellular metabolic functions during heat stress.


Asunto(s)
Respuesta al Choque Térmico , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas de Plantas/metabolismo , Saccharum/enzimología , Secuencia de Aminoácidos , Células Cultivadas , Clonación Molecular , ADN Complementario/genética , Datos de Secuencia Molecular , Nucleósido-Difosfato Quinasa/genética , Fosforilación , Proteínas de Plantas/genética , Saccharum/genética , Alineación de Secuencia , Serina/metabolismo , Nicotiana/enzimología , Nicotiana/genética
5.
Plant Cell ; 20(12): 3258-72, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19106375

RESUMEN

The survival of plants, as sessile organisms, depends on a series of postembryonic developmental events that determine the final architecture of plants and allow them to contend with a continuously changing environment. Modulation of cell differentiation and organ formation by environmental signals has not been studied in detail. Here, we report that alterations in the pattern of lateral root (LR) formation and emergence in response to phosphate (Pi) availability is mediated by changes in auxin sensitivity in Arabidopsis thaliana roots. These changes alter the expression of auxin-responsive genes and stimulate pericycle cells to proliferate. Modulation of auxin sensitivity by Pi was found to depend on the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and the transcription factor AUXIN RESPONSE FACTOR19 (ARF19). We determined that Pi deprivation increases the expression of TIR1 in Arabidopsis seedlings and causes AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) auxin response repressors to be degraded. Based on our results, we propose a model in which auxin sensitivity is enhanced in Pi-deprived plants by an increased expression of TIR1, which accelerates the degradation of AUX/IAA proteins, thereby unshackling ARF transcription factors that activate/repress genes involved in LR formation and emergence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Fosfatos/deficiencia , Fosfatos/fisiología , Raíces de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell ; 18(7): 1590-603, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16751346

RESUMEN

Nucleocytoplasmic transport of macromolecules is regulated by a large multisubunit complex called the nuclear pore complex (NPC). Although this complex is well characterized in animals and fungi, there is relatively little information on the NPC in plants. The suppressor of auxin resistance1 (sar1) and sar3 mutants were identified as suppressors of the auxin-resistant1 (axr1) mutant. Molecular characterization of these genes reveals that they encode proteins with similarity to vertebrate nucleoporins, subunits of the NPC. Furthermore, a SAR3-green fluorescent protein fusion protein localizes to the nuclear membrane, indicating that SAR1 and SAR3 are Arabidopsis thaliana nucleoporins. Plants deficient in either protein exhibit pleiotropic growth defects that are further accentuated in sar1 sar3 double mutants. Both sar1 and sar3 mutations affect the localization of the transcriptional repressor AXR3/INDOLE ACETIC ACID17, providing a likely explanation for suppression of the phenotype conferred by axr1. In addition, sar1 sar3 plants accumulate polyadenylated RNA within the nucleus, indicating that SAR1 and SAR3 are required for mRNA export. Our results demonstrate the important role of the plant NPC in hormone signaling and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas R-SNARE/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Fenotipo , Plantas Modificadas Genéticamente , Proteínas R-SNARE/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
7.
Dev Cell ; 9(1): 109-19, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15992545

RESUMEN

The plant hormone auxin has been implicated in virtually every aspect of plant growth and development. Auxin acts by promoting the degradation of transcriptional regulators called Aux/IAA proteins. Aux/IAA degradation requires TIR1, an F box protein that has been shown to function as an auxin receptor. However, loss of TIR1 has a modest effect on auxin response and plant development. Here we show that three additional F box proteins, called AFB1, 2, and 3, also regulate auxin response. Like TIR1, these proteins interact with the Aux/IAA proteins in an auxin-dependent manner. Plants that are deficient in all four proteins are auxin insensitive and exhibit a severe embryonic phenotype similar to the mp/arf5 and bdl/iaa12 mutants. Correspondingly, all TIR1/AFB proteins interact with BDL, and BDL is stabilized in triple mutant plants. Our results indicate that TIR1 and the AFB proteins collectively mediate auxin responses throughout plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Ácidos Indolacéticos/genética , Mutación , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Nature ; 435(7041): 441-5, 2005 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-15917797

RESUMEN

The plant hormone auxin regulates diverse aspects of plant growth and development. Recent studies indicate that auxin acts by promoting the degradation of the Aux/IAA transcriptional repressors through the action of the ubiquitin protein ligase SCF(TIR1). The nature of the signalling cascade that leads to this effect is not known. However, recent studies indicate that the auxin receptor and other signalling components involved in this response are soluble factors. Using an in vitro pull-down assay, we demonstrate that the interaction between transport inhibitor response 1 (TIR1) and Aux/IAA proteins does not require stable modification of either protein. Instead auxin promotes the Aux/IAA-SCF(TIR1) interaction by binding directly to SCF(TIR1). We further show that the loss of TIR1 and three related F-box proteins eliminates saturable auxin binding in plant extracts. Finally, TIR1 synthesized in insect cells binds Aux/IAA proteins in an auxin-dependent manner. Together, these results indicate that TIR1 is an auxin receptor that mediates Aux/IAA degradation and auxin-regulated transcription.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Proteínas F-Box/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/aislamiento & purificación , Proteínas Represoras/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Spodoptera , Temperatura , Transcripción Genética/efectos de los fármacos
9.
Curr Biol ; 13(16): 1418-22, 2003 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12932326

RESUMEN

The plant hormone auxin regulates diverse aspects of plant growth and development. Despite its importance, the mechanisms of auxin action remain poorly understood. In particular, the identities of the auxin receptor and other signaling proteins are unknown. Recent studies have shown that auxin acts by promoting the degradation of a family of transcriptional regulators called the Aux/IAA proteins. These proteins interact with another large family of plant-specific transcription factors called Auxin Response Factors (ARF) and negatively regulate their activity. Auxin stimulates Aux/IAA degradation by promoting the interaction between a ubiquitin protein ligase (E3) called SCF(TIR1) and the Aux/IAA protein. In this report, we demonstrate that auxin promotes the interaction between the Aux/IAA proteins and SCF(TIR1) in a soluble extract free of membranes, indicating that this auxin response is mediated by a soluble receptor. In addition, we show that the response is not dependent on protein phosphorylation or dephosphorylation but rather is prevented by an inhibitor of peptidyl-prolyl isomerases.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sistema Libre de Células , Inhibidores Enzimáticos/farmacología , Naftoquinonas/farmacología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Fosforilación , Proteínas de Plantas/metabolismo , Prolina/química , Estructura Terciaria de Proteína , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Solubilidad , Factores de Transcripción/metabolismo
10.
EMBO J ; 22(13): 3314-25, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12839993

RESUMEN

The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCF(TIR1). Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCF(TIR1) substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.


Asunto(s)
Proteínas de Arabidopsis/genética , Genes de Plantas , Ácidos Indolacéticos/fisiología , Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , ADN Complementario , Datos de Secuencia Molecular , Mutación , Unión Proteica , Ubiquitina-Proteína Ligasas
11.
EMBO J ; 22(8): 1762-70, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12682009

RESUMEN

The related-to-ubiquitin (RUB) protein is post-translationally conjugated to the cullin subunit of the SCF (SKP1, Cullin, F-box) class of ubiquitin protein ligases. Although the precise biochemical function of RUB modification is unclear, studies indicate that the modification is important for SCF function. In Arabidopsis, RUB modification of CUL1 is required for normal function of SCF(TIR1), an E3 required for response to the plant hormone auxin. In this report we show that an Arabidopsis protein called RCE1 functions as a RUB-conjugating enzyme in vivo. A mutation in the RCE1 gene results in a phenotype like that of the axr1 mutant. Most strikingly, plants deficient in both RCE1 and AXR1 have an embryonic phenotype similar to mp and bdl mutants, previously shown to be deficient in auxin signaling. Based on these results, we suggest that the RUB-conjugation pathway is required for auxin-dependent pattern formation in the developing embryo. In addition, we show that RCE1 interacts directly with the RING protein RBX1 and is present in a stable complex with SCF. We propose that RBX1 functions as an E3 for RUB modification of CUL1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Cullin , Ligasas/metabolismo , Animales , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclopentanos/metabolismo , Genes Reporteros , Sustancias de Crecimiento/genética , Sustancias de Crecimiento/metabolismo , Ligasas/genética , Mutación , Oxilipinas , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/anatomía & histología , Plantones/fisiología , Ubiquitinas
12.
Plant Cell ; 14(9): 2137-44, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12215511

RESUMEN

The ubiquitin-related protein RUB/Nedd8 is conjugated to members of the cullin family of proteins in plants, animals, and fungi. In Arabidopsis, the RUB conjugation pathway consists of a heterodimeric E1 (AXR1-ECR1) and a RUB-E2 called RCE1. The cullin CUL1 is a subunit in SCF-type ubiquitin protein ligases (E3s), including the SCF(TIR1) complex, which is required for response to the plant hormone auxin. Our previous studies showed that conjugation of RUB to CUL1 is required for normal SCF(TIR1) function. The RING-H2 finger protein RBX1 is a subunit of SCF complexes in fungi and animals. The function of RBX1 is to bind the ubiquitin-conjugating enzyme E2 and bring it into close proximity with the E3 substrate. We have identified two Arabidopsis genes encoding RING-H2 proteins related to human RBX1. Studies of one of these proteins indicate that, as in animals and fungi, Arabidopsis RBX1 is an SCF subunit. Reduced RBX1 levels result in severe defects in growth and development. Overexpression of RBX1 increases RUB modification of CUL1. This effect is associated with reduced auxin response and severe growth defects similar to those observed in axr1 mutants. As in the axr1 mutants, RBX1 overexpression stabilizes the SCF(TIR1) substrate AXR2/IAA7. The RBX1 protein is a component of SCF complexes in Arabidopsis. In addition to its direct role in SCF E3 ligase activity, RBX1 promotes the RUB modification of CUL1 and probably functions as an E3 ligase in the RUB pathway. Hypermodification of CUL1 disrupts SCF(TIR1) function, suggesting that cycles of RUB conjugation and removal are important for SCF activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ligasas/fisiología , Péptido Sintasas/fisiología , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Ligasas/genética , Ligasas/metabolismo , Datos de Secuencia Molecular , Mutación , Péptido Sintasas/genética , Plantas Modificadas Genéticamente , Proteínas Ligasas SKP Cullina F-box , Homología de Secuencia de Aminoácido , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Ubiquitinas/metabolismo
13.
Plant Mol Biol ; 49(3-4): 401-9, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12036263

RESUMEN

Auxin-regulated gene expression is mediated by two families of transcription factors. The ARF proteins bind to a conserved DNA sequence called the AuxRE and activate transcription. The Aux/IAA proteins repress ARF function, presumably by forming dimers with ARF proteins. Recent genetic studies in Arabidopsis indicate that auxin regulates this system by promoting the ubiquitin-mediated degradation of the Aux/IAA proteins, thus permitting ARF function. Mutations in components of SCF(TIR1), a ubiquitin protein ligase (E3) result in stabilization of Aux/IAA proteins and decreased auxin response. Further, recent biochemical experiments indicate that the Aux/IAA proteins bind SCF(TIR1) in an auxin-dependent manner.


Asunto(s)
Ácidos Indolacéticos/farmacología , Proteínas de Plantas/metabolismo , Plantas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Plantas/genética , Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
14.
Plant Cell ; 14(2): 421-33, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11884684

RESUMEN

Mutations in the AXR1 gene result in a reduction in auxin response and diverse defects in auxin-regulated growth and development. In a previous study, we showed that AXR1 forms a heterodimer with the ECR1 protein. This enzyme activates the ubiquitin-related protein RUB1 in vitro. Furthermore, we showed that the Skp1-Cul1/Cdc53-F-box (SCF) subunit AtCUL1 is modified by RUB1 in vivo. In this report, we demonstrate that the formation of RUB-AtCUL1 is dependent on AXR1 and ECR1 in vivo. The expression of AXR1 and ECR1 is restricted to zones of active cell division and cell elongation, consistent with their role in growth regulation. These results provide strong support for a model in which RUB conjugation of AtCUL1 affects the function of SCF E3s that are required for auxin response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sustancias de Crecimiento , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/genética , Meristema/metabolismo , Mutación , Péptido Sintasas/genética , Proteínas Ligasas SKP Cullina F-box , Ubiquitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA