Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 133954, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484657

RESUMEN

Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.


Asunto(s)
Arsénico , Debaryomyces , Oryza , Debaryomyces/genética , Debaryomyces/metabolismo , Oryza/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Glutatión/metabolismo
2.
Sci Total Environ ; 856(Pt 1): 158944, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152867

RESUMEN

Arsenic (As) has become natural health hazard for millions of people across the world due to its distribution in the food chain. Naturally, it is present in different oxidative states of inorganic [As(V) and As(III)] and organic (DMA, MMA and TMA) forms. Among different mitigation approaches, microbe mediated mitigation of As toxicity is an effective and eco-friendly approach. The present study involves the characterization of bacterial strains containing arsenite methyltransferase (Pseudomonas oleovorans, B4.10); arsenate reductase (Sphingobacterium puteale, B4.22) and arsenite oxidase (Citrobacter sp., B5.12) activity with plant growth promoting (PGP) traits. Efficient reduction of grain As content by 61 % was observed due to inoculation of methyltransferase containing B4.10 as compared to B4.22 (47 %) and B5.12 (49 %). Reduced bioaccumulation of As in root (0.339) and shoot (0.166) in presence of B4.10 was found to be inversely related with translocation factor for Mn (3.28), Fe (0.073), and Se (1.82). Bioaccumulation of these micro elements was found to be associated with the modulated expression of different mineral transporters (OsIRT2, OsFRO2, OsTOM1, OsSultr4;1, and OsZIP2) in rice shoot. Improved dehydrogenase (407 %), and ß-glucosidase (97 %) activity in presence of P. oleovorans (B4.10) as compared to arsenate reductase (198 and 50 %), and arsenite oxidase (134 and 69 %) containing bacteria was also observed. Our finding confers the potential of methyltransferase positive P. oleovorans (B4.10) for As stress amelioration. Reduced grain As uptake was found to be mediated by improved plant growth and nutrient uptake associated with enhanced soil microbial activity.


Asunto(s)
Arsénico , Arsenicales , Arsenitos , Oryza , Pseudomonas oleovorans , Humanos , Arsénico/toxicidad , Arsénico/metabolismo , Arseniato Reductasas/metabolismo , Pseudomonas oleovorans/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Arsenicales/metabolismo , Metiltransferasas , Arsenitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...