Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Mol Neurosci ; 11: 232, 2018.
Article En | MEDLINE | ID: mdl-30038559

The SCN1A gene encodes for the voltage-dependent Nav1.1 Na+ channel, an isoform mainly expressed in GABAergic neurons that is the target of hundreds of epileptogenic mutations. More recently, it has been shown that the SCN1A gene is also the target of mutations responsible for familial hemiplegic migraine (FHM-3), a rare autosomal dominant subtype of migraine with aura. Studies of these mutations indicate that they induce gain of function of the channel. Surprisingly, the mutation L1649Q responsible for pure FHM-3 showed a complete loss of function, but, when partially rescued it induced an overall gain of function because of modification of the gating properties of the mutant channel. Here, we report the characterization of the L1670W SCN1A mutation that has been previously identified in a Chinese family with pure FHM-3, and that we have identified also in a Caucasian American family with pure FHM-3. Notably, one patient in our family had severe neurological deterioration after brain radiation for cancer treatment. Functional analysis of L1670W reveals that the mutation is responsible for folding/trafficking defects and, when they are rescued by incubation at lower temperature or by expression in neurons, modifications of the gating properties lead to an overall gain of function. Therefore, L1670W is the second mutation responsible for FHM-3 with this pathophysiological mechanism, showing that it may be a recurrent mechanism for Nav1.1 hemiplegic migraine mutations.

2.
Epilepsia ; 58(12): 2073-2084, 2017 12.
Article En | MEDLINE | ID: mdl-29067685

OBJECTIVE: Kv7 channels mediate the voltage-gated M-type potassium current. Reduction of M current due to KCNQ2 mutations causes early onset epileptic encephalopathies (EOEEs). Mutations in STXBP1 encoding the syntaxin binding protein 1 can produce a phenotype similar to that of KCNQ2 mutations, suggesting a possible link between STXBP1 and Kv7 channels. These channels are known to be modulated by syntaxin-1A (Syn-1A) that binds to the C-terminal domain of the Kv7.2 subunit and strongly inhibits M current. Here, we investigated whether STXBP1could prevent this inhibitory effect of Syn-1A and analyzed the consequences of two mutations in STXBP1 associated with EOEEs. METHODS: Electrophysiologic analysis of M currents mediated by homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 channels in Chinese hamster ovary (CHO) cells coexpressing Syn-1A and/or STXBP1 or mutants STXBP1 p.W28* and p.P480L. Expression and interaction of these different proteins have been investigated using biochemical and co-immunoprecipitation experiments. RESULTS: Syn-1A decreased M currents mediated by Kv7.2 or Kv7.2/Kv7.3 channels. STXBP1 had no direct effects on M current but dampened the inhibition produced by Syn-1A by abrogating Syn-1A binding to Kv7 channels. The mutation p.W28*, but not p.P480L, failed to rescue M current from Syn-1A inhibition. Biochemical analysis showed that unlike the mutation p.W28*, the mutation p.P480L did not affect STXBP1 expression and reduced the interaction of Syn-1A with Kv7 channels. SIGNIFICANCE: These data indicate that there is a functional link between STXBP1 and Kv7 channels via Syn-1A, which may be important for regulating M-channel activity and neuronal excitability. They suggest also that a defect in Kv7 channel activity or regulation could be one of the consequences of some STXBP1 mutations associated with EOEEs. Furthermore, our data reveal that STXBP1 mutations associated with the Ohtahara syndrome do not necessarily result in protein haploinsufficiency.


KCNQ2 Potassium Channel/genetics , Munc18 Proteins/genetics , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Spasms, Infantile/genetics , Syntaxin 1/pharmacology , Animals , Biotinylation , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Electroencephalography , Humans , KCNQ1 Potassium Channel/antagonists & inhibitors , KCNQ1 Potassium Channel/genetics , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/genetics
...