Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259884

RESUMEN

For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of Pseudomonas aeruginosa (P. aeruginosa) biofilm biomass from underwater surfaces. The efficiency of biofilm removal appears to align with the compositional differences between various bacterial biofilms. In addition, the surface energy influences the ability of the polymer to displace the biofilm, with biofilm removal efficiency decreasing for surfaces with lower surface energies. These synthetic polymers weaken the biofilm-surface interactions and exert shear stress to fracture the biofilms grown on surfaces with diverse surface energies. Since bacterial biofilms are 1000-fold more tolerant to common antimicrobial agents and pose immense health and economic risks, we anticipate that our unconventional approach inspired by marine underwater adhesion will open a new paradigm in creating antibiofilm agents that target the interfacial and viscoelastic properties of established bacterial biofilms.

2.
Sci Adv ; 10(32): eadn8343, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110787

RESUMEN

While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low-surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.

3.
Chem Rev ; 124(11): 7165-7213, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38758918

RESUMEN

Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.


Asunto(s)
Radiación Electromagnética , Melaninas , Melaninas/química , Melaninas/metabolismo , Humanos , Animales
4.
Sci Adv ; 10(10): eadl1277, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446897

RESUMEN

Soft solids are sticky. They attract each other and spontaneously form a large area of contact. Their force of attraction is higher when separating than when forming contact, a phenomenon known as adhesion hysteresis. The common explanation for this hysteresis is viscoelastic energy dissipation or contact aging. Here, we use experiments and simulations to show that it emerges even for perfectly elastic solids. Pinning by surface roughness triggers the stick-slip motion of the contact line, dissipating energy. We derive a simple and general parameter-free equation that quantitatively describes contact formation in the presence of roughness. Our results highlight the crucial role of surface roughness and present a fundamental shift in our understanding of soft adhesion.

5.
Front Chem ; 11: 1287528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025056

RESUMEN

High-refractive index plastics are useful materials due to their optical properties, ease of processing, and low-costs compared to their inorganic counterparts. Catalytic carbon disulfide (CS2) copolymerization with epoxides is one method for producing low-cost high refractive index polymers. The reaction is accompanied by an oxygen-sulfur exchange reaction which produces irregular microstructures in the repeating units. In this study, metal salen catalysts were investigated with different metal centers (Al, Cr, Co) and salen ligand electronics, sterics, backbones, and co-catalyst in the copolymerization of CS2 with propylene oxide (PO) and cyclohexene oxide (CHO). The results reveal the essential nature of Cr metal centers on reactivity and the backbone geometry on monomer selectivity. There were no significant impacts on the O-S exchange reaction when ligand design changed, however PO and CHO/CS2 copolymers yield different monothiocarbonate microstructures. Additionally, the effects of microstructure on optical and thermal properties were investigated using spectroscopic ellipsometry and calorimetry, respectively. The CHO system produced high T g plastics (93°C) with high refractive indexes (n up to 1.64), modest absorbance (κ < 0.020), and Abbe numbers of 32.2 while PO yielded low T g adhesives (T g = 9°C) with high refractive indexes (n up to 1.73), low absorbance (κ < 0.005), and low Abbe numbers (V D = 19.1).

6.
ACS Appl Mater Interfaces ; 15(38): 45229-45238, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699412

RESUMEN

Hollow melanosomes found in iridescent bird feathers, including violet-backed starlings and wild turkeys, enable the generation of diverse structural colors. It has been postulated that the high refractive index (RI) contrast between melanin (1.74) and air (1.0) results in brighter and more saturated colors. This has led to several studies that have synthesized hollow synthetic melanin nanoparticles and fabricated colloidal nanostructures to produce synthetic structural colors. However, these studies use hollow nanoparticles with thin shells (<20 nm), even though shell thicknesses as high as 100 nm have been observed in natural melanosomes. Here, we combine experimental and computational approaches to examine the influence of the varying polydopamine (PDA, synthetic melanin) shell thickness (0-100 nm) and core material on structural colors. Experimentally, a concomitant change in overall particle size and RI contrast makes it difficult to interpret the effect of a hollow or solid core on color. Thus, we utilize finite-difference time-domain (FDTD) simulations to uncover the effect of shell thickness and core on structural colors. Our FDTD results highlight that hollow particles with thin shells have substantially higher saturation than same-sized solid and core-shell particles. These results would benefit a wide range of applications including paints, coatings, and cosmetics.

7.
Sci Adv ; 9(21): eadf2859, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235651

RESUMEN

Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.

8.
J R Soc Interface ; 20(200): 20220920, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854381

RESUMEN

Until recently, and when compared with diurnal birds that use contrasting plumage patches and complex feather structures to convey visual information, communication in nocturnal and crepuscular species was considered to follow acoustic and chemical channels. However, many birds that are active in low-light environments have evolved intensely white plumage patches within otherwise inconspicuous plumages. We used spectrophotometry, electron microscopy, and optical modelling to explain the mechanisms producing bright white tail feather tips of the Eurasian woodcock Scolopax rusticola. Their diffuse reflectance was approximately 30% higher than any previously measured feather. This intense reflectance is the result of incoherent light scattering from a disordered nanostructure composed of keratin and air within the barb rami. In addition, the flattening, thickening and arrangement of those barbs create a Venetian-blind-like macrostructure that enhances the surface area for light reflection. We suggest that the woodcocks have evolved these bright white feather patches for long-range visual communication in dimly lit environments.


Asunto(s)
Asteraceae , Charadriiformes , Animales , Aves , Plumas , Citoesqueleto
9.
Zoology (Jena) ; 157: 126078, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848689

RESUMEN

Claws are a common anatomical feature among limbed amniotes and contribute to a variety of functions including prey capture, locomotion, and attachment. Previous studies of both avian and non-avian reptiles have found correlations between habitat use and claw morphology, suggesting that variation in claw shape permits effective functioning in different microhabitats. How, or if, claw morphology influences attachment performance, particularly in isolation from the rest of the digit, has received little attention. To examine the effects of claw shape on frictional interactions, we isolated the claws of preserved specimens of Cuban knight anoles (Anolis equestris), quantified variation in claw morphology via geometric morphometrics, and measured friction on four different substrates that varied in surface roughness. We found that multiple aspects of claw shape influence frictional interactions, but only on substrates for which asperities are large enough to permit mechanical interlocking with the claw. On such substrates, the diameter of the claw's tip is the most important predictor of friction, with narrower claw tips inducing greater frictional interactions than wider ones. We also found that claw curvature, length, and depth influence friction, but that these relationships depend on the substrate's surface roughness. Our findings suggest that although claw shape plays a critical role in the effective clinging ability of lizards, its relative importance is dependent upon the substrate. Description of mechanical function, as well as ecological function, is critical for a holistic understanding of claw shape variation.


Asunto(s)
Lagartos , Locomoción , Animales , Fricción , Lagartos/anatomía & histología , Ecosistema , Aves
10.
J R Soc Interface ; 19(196): 20220466, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321372

RESUMEN

Microscopic papillae on polar bear paw pads are considered adaptations for increased friction on ice/snow, yet this assertion is based on a single study of one species. The lack of comparative data from species that exploit different habitats renders the ecomorphological associations of papillae unclear. Here, we quantify the surface roughness of the paw pads of four species of bear over five orders of magnitude by calculating their surface roughness power spectral density. We find that interspecific variation in papillae base diameter can be explained by paw pad width, but that polar bear paw pads have 1.5 times taller papillae and 1.3 times more true surface area than paw pads of the American black bear and brown bear. Based on friction experiments with three-dimensional printed model surfaces and snow, we conclude that these factors increase the frictional shear stress of the polar bear paw pad on snow by a factor of 1.3-1.5 compared with the other species. Absolute frictional forces, however, are estimated to be similar among species once paw pad area is accounted for, suggesting that taller papillae may compensate for frictional losses resulting from the relatively smaller paw pads of polar bears compared with their close relatives.


Asunto(s)
Ursidae , Animales , Ursidae/anatomía & histología , Nieve , Fricción , Adaptación Fisiológica , Piel
11.
ACS Macro Lett ; 11(11): 1285-1290, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36282218

RESUMEN

We correlate the strength of interfacial interactions with the adhesive force necessary to separate a polymer from a surface. It is intuitive that interactions would influence adhesion and friction; however, challenges in the direct measurement of the interaction strength at interfaces have obscured the connection between these interactions and such phenomena. We overcome this by using interface-sensitive sum frequency generation spectroscopy to determine the strength of interfacial interactions between polymers and sapphire through a shift in vibrational frequency and compare this with mechanical adhesion tests. Our results indicate that spectroscopic shifts can be used to directly estimate adhesion, especially for polar materials. This work provides a framework to connect molecular interactions to interfacial properties, enabling the design and rapid screening of molecular architectures.


Asunto(s)
Adhesivos , Polímeros , Humanos , Propiedades de Superficie , Polímeros/química , Análisis Espectral/métodos , Vibración , Adherencias Tisulares
12.
ACS Cent Sci ; 8(7): 996-1007, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35912348

RESUMEN

We present a new open-source, machine learning (ML) enhanced computational method for experimentalists to quickly analyze high-throughput small-angle scattering results from multicomponent nanoparticle mixtures and solutions at varying compositions and concentrations to obtain reconstructed 3D structures of the sample. This new method is an improvement over our original computational reverse-engineering analysis for scattering experiments (CREASE) method (ACS Materials Au2021, 1 (2 (2), ), 140-156), which takes as input the experimental scattering profiles and outputs a 3D visualization and structural characterization (e.g., real space pair-correlation functions, domain sizes, and extent of mixing in binary nanoparticle mixtures) of the nanoparticle mixtures. The new gene-based CREASE method reduces the computational running time by >95% as compared to the original CREASE and performs better in scenarios where the original CREASE method performed poorly. Furthermore, the ML model linking features of nanoparticle solutions (e.g., concentration, nanoparticles' tendency to aggregate) to a computed scattering profile is generic enough to analyze scattering profiles for nanoparticle solutions at conditions (nanoparticle chemistry and size) beyond those that were used for the ML training. Finally, we demonstrate application of this new gene-based CREASE method for analysis of small-angle X-ray scattering results from a nanoparticle solution with unknown nanoparticle aggregation and small-angle neutron scattering results from a binary nanoparticle assembly with unknown mixing/segregation among the nanoparticles.

13.
Soft Matter ; 18(31): 5843-5849, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900052

RESUMEN

Friction is one of the leading causes of energy loss in moving parts, and understanding how roughness affects friction is of utmost importance. From creating surfaces with high friction to prevent slip and movement, to creating surfaces with low friction to minimize energy loss, roughness plays a key role. By measuring shear stresses of crosslinked elastomers on three rough surfaces of similar surface chemistry across nearly six decades of sliding velocity, we demonstrate the dominant role of adhesive frictional dissipation. Furthermore, while it was previously known that roughness-induced oscillations affected the viscoelastic dissipation, we show that these oscillations also control the molecular detachment process and the resulting adhesive dissipation. This contrasts with typical models of friction, where only the amount of contact area and the strength of interfacial bonding govern the adhesive dissipation. Finally, we show that all the data can be collapsed onto a universal curve when the shear stress is scaled by the square root of elastic modulus and the velocity is scaled by a critical velocity at which the system exhibits macroscopic buckling instabilities. Taken together, these results suggest a design principle broadly applicable to frictional systems ranging from tires to soft robotics.

14.
Sci Rep ; 12(1): 11556, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798824

RESUMEN

The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.


Asunto(s)
Lagartos , Adhesividad , Animales , Fenómenos Biomecánicos , Propiedades de Superficie , Agua
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121614, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35850044

RESUMEN

Using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for direct quantitative analysis is highly desirable for many sample systems due to advantages such as rapid spectra collection and being completely non-destructive. However, for many complex sample matrices the feasibility of direct quantitative analysis using ATR-FTIR is uncertain. The commonly used Beer-Lambert law may not be applicable for many systems in general, besides sample related complexities such as inhomogeneity, variable optical properties, or heavily overlapping absorption bands. In this study, we consider fully formulated vulcanized rubber with carbon black or silica as the primary filler as our system of interest. We developed a method to simultaneously quantify the concentration of three different antidegradents of similar chemical structure directly on rubber samples using ATR-FTIR spectra. Results show that absorbance follows the Beer-Lambert law well for the range of antidegradent concentrations considered. Despite this, a direct application of the Beer-Lambert law to deconvolute overlapping peaks between antidegradents proved insufficient. Through the application of partial least squares (PLS) multivariate analysis, remarkable prediction accuracy of within about 0.15 wt% error for all three antidegradents was achieved for both types of rubber formulations, even with high levels of carbon black. These results show the value this method has for quantitative analysis of additives in rubber. Our investigation highlights the potential usefulness of FTIR spectroscopy in general for rapid quantitative analysis directly on samples of interest without any prior chemical separation.


Asunto(s)
Goma , Hollín , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Espectroscopía Infrarroja por Transformada de Fourier/métodos
16.
ACS Biomater Sci Eng ; 8(8): 3354-3360, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894694

RESUMEN

Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.


Asunto(s)
Arañas , Adhesivos/química , Adhesivos/metabolismo , Animales , Humedad , Arañas/química , Arañas/metabolismo , Viscosidad , Agua/metabolismo
17.
Chem Soc Rev ; 50(23): 13321-13345, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34751690

RESUMEN

Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.


Asunto(s)
Adhesivos , Bivalvos , Animales , Humanos , Proteínas , Agua
18.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615709

RESUMEN

Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth-hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic-hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic-hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid-solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.

19.
ACS Appl Mater Interfaces ; 13(34): 41084-41093, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415147

RESUMEN

Silica aerogels are interesting porous materials with extremely low density and high surface area, making them advantageous for a number of aerospace and catalysis applications. Here, we report the preparation of polydopamine (PDA)-functionalized silica aerogels using an in situ coating method, wherein the dopamine monomer was allowed to diffuse through the underlying structure of the gels in the absence of any external base and polymerize on the surface of the gel. The use of a siloxane precursor with an amine functionality decorates the silica backbone, allowing for a superior PDA coating, as evident in the darker color of PDA-coated amine-functionalized silica gels than PDA-coated silica-only gels and the X-ray photoelectron spectroscopy results. Furthermore, by varying the coating time, a series of aerogels with increasing optical absorption are prepared. Analyses using Brunauer-Emmett-Teller, scanning electron microscopy, and pycnometry show that the in situ PDA coating does not affect the inherent properties of the silica aerogels as opposed to PDA coatings deposited using an external base. Aerogels coated for 12 h and 24 h offer a surface area of 614 ± 35 and 658 ± 15 m2/g along with a porosity of 92.6 ± 0.9 and 92.4 ± 0.7%, respectively, properties similar to the native silica aerogels. PDA-coated aerogels have the potential to serve as UV ray mitigating materials due to the tortuosity of the underlying structure and the unique chemical properties of the PDA coating.

20.
J R Soc Interface ; 18(181): 20210252, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343456

RESUMEN

The diverse colours of bird feathers are produced by both pigments and nanostructures, and can have substantial thermal consequences. This is because reflectance, transmittance and absorption of differently coloured tissues affect the heat loads acquired from solar radiation. Using reflectance measurements and heating experiments on sunbird museum specimens, we tested the hypothesis that colour and their colour producing mechanisms affect feather surface heating and the heat transferred to skin level. As predicted, we found that surface temperatures were strongly correlated with plumage reflectivity when exposed to a radiative heat source and, likewise, temperatures reached at skin level decreased with increasing reflectivity. Indeed, nanostructured melanin-based iridescent feathers (green, purple, blue) reflected less light and heated more than unstructured melanin-based colours (grey, brown, black), as well as olives, carotenoid-based colours (yellow, orange, red) and non-pigmented whites. We used optical and heat modelling to test if differences in nanostructuring of melanin, or the bulk melanin content itself, better explains the differences between melanin-based feathers. These models showed that the greater melanin content and, to a lesser extent, the shape of the melanosomes explain the greater photothermal absorption in iridescent feathers. Our results suggest that iridescence can increase heat loads, and potentially alter birds' thermal balance.


Asunto(s)
Plumas , Passeriformes , Animales , Color , Iridiscencia , Pigmentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA