Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
J Clin Oncol ; : JCO2401008, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879802

RESUMEN

PURPOSE: We present a phase I/II first-in-human trial evaluating the safety and efficacy of 50 mg and 200 mg doses of linvoseltamab, a B-cell maturation antigen × CD3 bispecific antibody in relapsed/refractory multiple myeloma (RRMM). METHODS: Phase II eligible patients had RRMM that either progressed on/after ≥three lines of therapy including a proteasome inhibitor (PI), an immunomodulatory drug (IMiD), and an anti-CD38 antibody or was triple-class (PI/IMiD/anti-CD38) refractory. Phase II treatment was once a week through week 14 and then once every 2 weeks. Phase II 200 mg patients who achieved a ≥very good partial response by week 24 received linvoseltamab once every 4 weeks. The primary end point in phase II was overall response rate (ORR). RESULTS: Among the 117 patients treated with 200 mg, the median age was 70 years, 39% had high-risk cytogenetics, and 28% had penta-refractory disease. At a median follow-up of 14.3 months, the ORR was 71%, with 50% achieving ≥complete response (CR). In 104 patients treated with 50 mg at a median follow-up of 7.4 months, the ORR was 48%, with 21% achieving ≥CR. The median duration of response (DOR) for 200 mg patients (n = 83) was 29.4 months (95% CI, 19.2 to not evaluable). Among 200 mg patients, the most common adverse events included cytokine release syndrome (35.0% Gr1, 10.3% Gr2, 0.9% Gr3), neutropenia (0.9% Gr2, 18.8% Gr3, 23.1% Gr4), and anemia (3.4% Gr1, 4.3% Gr2, 30.8% Gr3). Immune effector cell-associated neurotoxicity syndrome occurred in 7.7% of patients (2.6% each Gr1, Gr2, Gr3). Infections were reported in 74.4% of patients (33.3% Gr3, 2.6% Gr4); infection frequency and severity declined over time. CONCLUSION: Linvoseltamab 200 mg induced deep and durable responses, with a median DOR of 29.4 months, in patients with RRMM with an acceptable safety profile.

3.
Lancet Haematol ; 11(7): e510-e520, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797190

RESUMEN

BACKGROUND: Currently, the use of radiotherapy alone for people with multiple myeloma is limited to palliation of pain, pending fracture, and control of spinal-cord compression. Single immune-checkpoint inhibitors, such as anti-programmed death-1 (anti-PD1), have not been successful. We aimed to evaluate the activity and safety of the combination of pembrolizumab and low-dose, single-fraction, hypofractionated radiotherapy to treat patients with relapsed or refractory multiple myeloma. METHODS: For this prospective, single-centre, single-group, open-label, phase 2 trial, we recruited patients with relapsed or refractory multiple myeloma from the Winship Cancer Institute (Emory University, Atlanta, GA, USA). Key inclusion criteria were aged 18 years or older, Eastern Cooperative Oncology Group (ECOG) performance score of 0 or 1, relapsed or refractory multiple myeloma as indicated by progression under International Myeloma Working Group (IMWG) criteria, and adequate candidacy for both pembrolizumab and radiotherapy. Baseline and post-treatment assessments were serial bone-marrow biopsy, peripheral blood collections, staging, serial serum and urine paraprotein analysis, serial PET-CT imaging, and a physical examination. On day 1, patients received hypofractionated 8 gray in 1 fraction (8 Gy/1 fx) radiotherapy to either symptomatic or progressing extra-osseous or osseous myeloma sites. Patients also received pembrolizumab (200 mg/kg intravenously) on day 2 or 3, then once every 3 weeks (±7 days) for 2 years or until progressive disease, unacceptable toxicity, withdrawal of consent, loss to follow-up, or death. Dose reduction and interruptions were not allowed. The primary outcome was acute toxicity defined as grade 3 or worse toxicity at 3 months within the radiated site when used in combination with pembrolizumab. All patients were analysed per protocol and included in safety analyses. This trial is registered on ClinicalTrials.gov (NCT03267888); it is completed and closed to accrual. FINDINGS: 32 patients were screened between June 1, 2018, and Sept 2, 2022, and 25 were enrolled in the trial and treated on protocol. Of the 25 treated patients, 11 (44%) were female and 14 (56%) were male. 19 (76%) patients were White and six (24%) were Black or African American. Toxicity, as the primary outcome, was deemed to be acceptable as no grade 4 or 5 adverse events were observed. At 3-month follow-up, eight (32%) of 25 patients had treatment benefit (one had stable disease, three had partial response, two had very good partial response, and two had complete response). There was no grade 3 or worse radiation-related toxicity within irradiated volumes. One (4%) patient of the 25 who received combination treatment had a grade 3 pembrolizumab-related adverse event. There were no treatment-related deaths. INTERPRETATION: Combination treatment of low-dose, single-fraction radiotherapy with pembrolizumab was safe, with early promise of response activity. Our approach could be an option for patients with relapsed or refractory multiple myeloma who have not responded to previous treatment. Larger trials to substantiate our findings are needed. FUNDING: Merck Sharp & Dohme.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Mieloma Múltiple , Humanos , Mieloma Múltiple/radioterapia , Mieloma Múltiple/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Proyectos Piloto , Estados Unidos , Recurrencia Local de Neoplasia , Adulto , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/efectos adversos , Anciano de 80 o más Años
5.
Clin Infect Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801746

RESUMEN

BACKGROUND: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS: We conducted a multicenter prospective observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. RESULTS: We enrolled 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), and chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy immunity. CONCLUSIONS: These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation three to four months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T cell therapy.

6.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798338

RESUMEN

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

7.
Sci Immunol ; 9(94): eadg1094, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640253

RESUMEN

Chronic antigen stimulation is thought to generate dysfunctional CD8 T cells. Here, we identify a CD8 T cell subset in the bone marrow tumor microenvironment that, despite an apparent terminally exhausted phenotype (TPHEX), expressed granzymes, perforin, and IFN-γ. Concurrent gene expression and DNA accessibility revealed that genes encoding these functional proteins correlated with BATF expression and motif accessibility. IFN-γ+ TPHEX effectively killed myeloma with comparable efficacy to transitory effectors, and disease progression correlated with numerical deficits in IFN-γ+ TPHEX. We also observed IFN-γ+ TPHEX within CD19-targeted chimeric antigen receptor T cells, which killed CD19+ leukemia cells. An IFN-γ+ TPHEX gene signature was recapitulated in TEX cells from human cancers, including myeloma and lymphoma. Here, we characterize a TEX subset in hematological malignancies that paradoxically retains function and is distinct from dysfunctional TEX found in chronic viral infections. Thus, IFN-γ+ TPHEX represent a potential target for immunotherapy of blood cancers.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A , Mieloma Múltiple/metabolismo , Linfocitos T CD8-positivos , Fenotipo , Microambiente Tumoral
8.
Blood Adv ; 8(10): 2424-2432, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38564776

RESUMEN

ABSTRACT: Newer immune-based approaches based on recruitment and redirection of endogenous and/or synthetic immunity such as chimeric antigen receptor T cells or bispecific antibodies are transforming the clinical management of multiple myeloma (MM). Contributions of the immune system to the antitumor effects of myeloma therapies are also increasingly appreciated. Clinical malignancy in MM originates in the setting of systemic immune alterations that begin early in myelomagenesis and regional changes in immunity affected by spatial contexture. Preexisting and therapy-induced changes in immune cells correlate with outcomes in patients with MM including after immune therapies. Here, we discuss insights from and limitations of available data about immune status and outcomes after immune therapies in patients with MM. Preexisting variation in systemic and/or regional immunity is emerging as a major determinant of the efficacy of current immune therapies as well as vaccines. However, MM is a multifocal malignancy. As with solid tumors, integrating spatial aspects of the tumor and consideration of immune targets with the biology of immune cells may be critical to optimizing the application of immune therapy, including T-cell redirection, in MM. We propose 5 distinct spatial immune types of MM that may provide an initial framework for the optimal application of specific immune therapies in MM: immune depleted, immune permissive, immune excluded, immune suppressed, and immune resistant. Such considerations may also help optimize rational patient selection for emerging immune therapies to improve outcomes.


Asunto(s)
Inmunoterapia , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Inmunoterapia/métodos , Selección de Paciente
9.
Blood Cancer Discov ; 5(3): 146-152, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441243

RESUMEN

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.


Asunto(s)
Ensayos Clínicos como Asunto , Mieloma Múltiple , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Humanos , Ensayos Clínicos como Asunto/métodos , Proyectos de Investigación , Calidad de Vida
10.
medRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38343800

RESUMEN

Background: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective: To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design: Multicenter prospective observational study. Setting: 34 centers in the United States. Participants: 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions: SARS-CoV-2 vaccination as part of routine care. Measurements: We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results: Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations: The majority of participants were adults and received mRNA vaccines. Conclusions: These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

11.
Crit Rev Oncog ; 29(1): 63-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421714

RESUMEN

Natural Killer T (NKT) cells are distinct innate lymphocytes that recognize lipid antigens in the context of nonpolymorphic molecule CD1d. Multiple myeloma (MM) is a hematologic malignancy wherein malignant plasma cells express CD1d and are sensitive to lysis by NKT cells. Progressive malignancy in MM is characterized by NKT cell dysfunction. Several studies have tried to harness the anti-tumor properties of NKT cells in MM to mediate tumor regression. NKT cells are also attractive targets for approaches at immune redirection in MM with chimeric-antigen receptor NKT (CAR-NKT) and bispecific antibodies. In addition to the commonly studied invariant-NKT (iNKT) cells, MM patients often also exhibit alterations in type-II NKT cells and their ligands. In patients and mouse models with Gaucher disease (GD), an inherited lipid-storage disorder with markedly increased risk for MM, distinct type-II NKT cells exhibit a T-follicular helper (NKT-TFH) phenotype and provide help to lipid-specific B cells. Chronic immune activation in this setting eventually sets the stage for malignancy, which can be targeted in both mouse models and GD patients by reducing the underlying antigen. NKT cells are thus integrally linked to MM pathogenesis and an attractive target for MM immunotherapy.


Asunto(s)
Mieloma Múltiple , Células T Asesinas Naturales , Animales , Ratones , Humanos , Mieloma Múltiple/terapia , Modelos Animales de Enfermedad , Células Asesinas Naturales , Biología , Lípidos
12.
Hematol Oncol Clin North Am ; 38(2): 281-291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195307

RESUMEN

This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Humanos , Mieloma Múltiple/etiología , Mieloma Múltiple/terapia , Gammopatía Monoclonal de Relevancia Indeterminada/etiología , Gammopatía Monoclonal de Relevancia Indeterminada/terapia , Progresión de la Enfermedad
14.
iScience ; 26(11): 108256, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965140

RESUMEN

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of human angiotensin converting enzyme 2 (hACE-2) binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using Wuhan-WT (vaccine strain), delta (B.1.167.2), omicron BA1 and BA2 variant viral strains showed strong correlation with cell-based pseudovirus neutralization activity (PNA) and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta and omicron variant resistance to neutralization in samples with paired vaccine strain and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. Importantly, this completely automated assay can be performed in 4 h to measure neutralizing antibody titers for 16 samples over 8 serial dilutions or, 128 samples at a single dilution with replicates. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

15.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993715

RESUMEN

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ácidos Oléicos , Animales , Bovinos , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Productos Lácteos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Leche/química , Neoplasias/dietoterapia , Neoplasias/inmunología , Ácidos Oléicos/farmacología , Ácidos Oléicos/uso terapéutico , Carne Roja , Ovinos
16.
NPJ Vaccines ; 8(1): 179, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990024

RESUMEN

This study reports that most patients with NSCLC had a significant increase in the nAb response to the currently circulating Omicron variants after bivalent booster vaccination and had Ab titers comparable to healthy participants. Interestingly, though the durability of the nAb response persisted in most of the healthy participants, patients with NSCLC had significantly reduced nAb titers after 4-6 months of vaccination. Our data highlight the importance of COVID-19 bivalent booster vaccination as the standard of care for patients with NSCLC given the evolution of new variants of concern.

17.
Res Sq ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790523

RESUMEN

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

18.
Clin Cancer Res ; 29(22): 4524-4526, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37737650

RESUMEN

Immune-based approaches including T-cell redirection have transformed the therapeutic landscape in myeloma. Injection of dendritic cells (DC) led to the induction of immune responses in vaccinated patients with myeloma. These studies pave the way for future combination strategies harnessing DCs to enhance tumor immunity and improve outcomes in myeloma. See related article by Freeman et al., p. 4575.


Asunto(s)
Vacunas contra el Cáncer , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Células Dendríticas , Linfocitos T , Vacunas contra el Cáncer/uso terapéutico
19.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662390

RESUMEN

We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.

20.
J Clin Invest ; 133(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526080

RESUMEN

Entry of antigen-specific T cells into human tumors is critical for immunotherapy, but the underlying mechanisms are poorly understood. Here, we combined high-dimensional spatial analyses with in vitro and in vivo modeling to study the mechanisms underlying immune infiltration in human multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS). Clustered tumor growth was a feature of MM but not MGUS biopsies, and this growth pattern was reproduced in humanized mouse models. MM biopsies exhibited intralesional as well as spatial heterogeneity, with coexistence of T cell-rich and T cell-sparse regions and the presence of areas of T cell exclusion. In vitro studies demonstrated that T cell entry into MM clusters was regulated by agonistic signals and CD2-CD58 interactions. Upon adoptive transfer, antigen-specific T cells localized to the tumor site but required in situ DC-mediated antigen presentation for tumor entry. C-type lectin domain family 9 member A-positive (CLEC9A+) DCs appeared to mark portals of entry for gradients of T cell infiltration in MM biopsies, and their proximity to T cell factor 1-positive (TCF1+) T cells correlated with disease state and risk status. These data illustrate a role for tumor-associated DCs and in situ activation in promoting the infiltration of antigen-specific T cells in MM and provide insights into spatial alterations in tumor/immune cells with malignant evolution.


Asunto(s)
Mieloma Múltiple , Lesiones Precancerosas , Animales , Ratones , Humanos , Mieloma Múltiple/patología , Linfocitos T , Lesiones Precancerosas/patología , Inmunoterapia/métodos , Presentación de Antígeno , Células Dendríticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...