Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; 240(7): e14163, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38752665

RESUMEN

AIM: To reveal the contribution of Irisin in the beneficial effects of resistance exercise on myocardial fibrosis (MF) and cardiac function in the mice with myocardial infarction (MI). METHODS: The MI model was built by ligating the left anterior descending coronary artery in Fndc5 knockout mice (Fndc5-/-). Resistance exercise was started one week after surgery and continued for four weeks. In addition, H2O2, AICAR, recombinant human Irisin protein (rhIRISIN), and Sirt1 shRNA lentivirus (LV-Sirt1 shRNA) were used to intervene primary isolated cardiac fibroblasts (CFs). MF was observed through Masson staining, and apoptosis was assessed using TUNEL staining. MDA and T-SOD contents were detected by biochemical kits. The expression of proteins and genes was detected by Western blotting and RT-qPCR. RESULTS: Resistance exercise increased Fndc5 mRNA level, inhibited the activation of TGFß1-TGFßR2-Smad2/3 pathway, activated AMPK-Sirt1 pathway, reduced the levels of oxidative stress, apoptosis, and MF in the infarcted heart, and promoted cardiac function. However, Fndc5 knockout attenuated the protective effects of resistance exercise on the MI heart. Results of the in vitro experiments showed that AICAR and rhIRISIN intervention activated the AMPK-Sirt1 pathway and inactivated the TGFß1-Smad2/3 pathway, and promoted apoptosis in H2O2-treated CFs. Notably, these effects of rhIRISIN intervention, except for the TGFßR2 expression, were attenuated by LV-Sirt1 shRNA. CONCLUSION: Resistance exercise upregulates Fndc5 expression, activates AMPK-Sirt1 pathway, inhibits the activation of TGFß1-Smad2/3 pathway, attenuates MF, and promotes cardiac function after MI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibronectinas , Fibrosis , Ratones Noqueados , Infarto del Miocardio , Sirtuina 1 , Factor de Crecimiento Transformador beta1 , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Sirtuina 1/metabolismo , Sirtuina 1/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Ratones , Fibrosis/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Regulación hacia Arriba , Entrenamiento de Fuerza , Masculino , Miocardio/metabolismo , Miocardio/patología , Proteína smad3/metabolismo , Proteína smad3/genética , Condicionamiento Físico Animal/fisiología , Ratones Endogámicos C57BL , Transducción de Señal
2.
Adv Sci (Weinh) ; 11(20): e2305581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488323

RESUMEN

Cardiac function is under neural regulation; however, brain regions in the cerebral cortex responsible for regulating cardiac function remain elusive. In this study, retrograde trans-synaptic viral tracing is used from the heart to identify a specific population of the excitatory neurons in the primary motor cortex (M1) that influences cardiac function in mice. Optogenetic activation of M1 glutamatergic neurons increases heart rate, ejection fraction, and blood pressure. By contrast, inhibition of M1 glutamatergic neurons decreased cardiac function and blood pressure as well as tyrosine hydroxylase (TH) expression in the heart. Using viral tracing and optogenetics, the median raphe nucleus (MnR) is identified as one of the key relay brain regions in the circuit from M1 that affect cardiac function. Then, a mouse model of cardiac injury is established caused by myocardial infarction (MI), in which optogenetic activation of M1 glutamatergic neurons impaired cardiac function in MI mice. Moreover, ablation of M1 neurons decreased the levels of norepinephrine and cardiac TH expression, and enhanced cardiac function in MI mice. These findings establish that the M1 neurons involved in the regulation of cardiac function and blood pressure. They also help the understanding of the neural mechanisms underlying cardiovascular regulation.


Asunto(s)
Modelos Animales de Enfermedad , Corteza Motora , Infarto del Miocardio , Neuronas , Optogenética , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/genética , Ratones , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Optogenética/métodos , Neuronas/metabolismo , Masculino , Corazón/fisiopatología , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Presión Sanguínea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA