Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Comput Biol Med ; 174: 108430, 2024 May.
Article En | MEDLINE | ID: mdl-38613892

BACKGROUND: To investigate the effectiveness of contrastive learning, in particular SimClr, in reducing the need for large annotated ultrasound (US) image datasets for fetal standard plane identification. METHODS: We explore SimClr advantage in the cases of both low and high inter-class variability, considering at the same time how classification performance varies according to different amounts of labels used. This evaluation is performed by exploiting contrastive learning through different training strategies. We apply both quantitative and qualitative analyses, using standard metrics (F1-score, sensitivity, and precision), Class Activation Mapping (CAM), and t-Distributed Stochastic Neighbor Embedding (t-SNE). RESULTS: When dealing with high inter-class variability classification tasks, contrastive learning does not bring a significant advantage; whereas it results to be relevant for low inter-class variability classification, specifically when initialized with ImageNet weights. CONCLUSIONS: Contrastive learning approaches are typically used when a large number of unlabeled data is available, which is not representative of US datasets. We proved that SimClr either as pre-training with backbone initialized via ImageNet weights or used in an end-to-end dual-task may impact positively the performance over standard transfer learning approaches, under a scenario in which the dataset is small and characterized by low inter-class variability.


Ultrasonography, Prenatal , Humans , Ultrasonography, Prenatal/methods , Pregnancy , Female , Machine Learning , Fetus/diagnostic imaging , Algorithms , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
2.
Med Image Anal ; 83: 102629, 2023 01.
Article En | MEDLINE | ID: mdl-36308861

Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. A number of survey papers in the field is today available, but most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 153 research papers published after 2017. Papers are analyzed and commented from both the methodology and the application perspective. We categorized the papers into (i) fetal standard-plane detection, (ii) anatomical structure analysis and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. In addition, emerging applications are also outlined. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into actual clinical practice.


Deep Learning , Humans
3.
Med Biol Eng Comput ; 60(11): 3255-3264, 2022 Nov.
Article En | MEDLINE | ID: mdl-36152237

Ultrasound (US) imaging is recognized as a useful support for Carpal Tunnel Syndrome (CTS) assessment through the evaluation of median nerve morphology. However, US is still far to be systematically adopted to evaluate this common entrapment neuropathy, due to US intrinsic challenges, such as its operator dependency and the lack of standard protocols. To support sonographers, the present study proposes a fully-automatic deep learning approach to median nerve segmentation from US images. We collected and annotated a dataset of 246 images acquired in clinical practice involving 103 rheumatic patients, regardless of anatomical variants (bifid nerve, closed vessels). We developed a Mask R-CNN with two additional transposed layers at segmentation head to accurately segment the median nerve directly on transverse US images. We calculated the cross-sectional area (CSA) of the predicted median nerve. Proposed model achieved good performances both in median nerve detection and segmentation: Precision (Prec), Recall (Rec), Mean Average Precision (mAP) and Dice Similarity Coefficient (DSC) values are 0.916 ± 0.245, 0.938 ± 0.233, 0.936 ± 0.235 and 0.868 ± 0.201, respectively. The CSA values measured on true positive predictions were comparable with the sonographer manual measurements with a mean absolute error (MAE) of 0.918 mm2. Experimental results showed the potential of proposed model, which identified and segmented the median nerve section in normal anatomy images, while still struggling when dealing with infrequent anatomical variants. Future research will expand the dataset including a wider spectrum of normal anatomy and pathology to support sonographers in daily practice.


Carpal Tunnel Syndrome , Deep Learning , Bays , Carpal Tunnel Syndrome/diagnostic imaging , Carpal Tunnel Syndrome/pathology , Humans , Median Nerve/anatomy & histology , Median Nerve/pathology , Ultrasonography/methods , Wrist/diagnostic imaging
4.
Arthritis Res Ther ; 24(1): 38, 2022 02 08.
Article En | MEDLINE | ID: mdl-35135598

BACKGROUND: Deep learning applied to ultrasound (US) can provide a feedback to the sonographer about the correct identification of scanned tissues and allows for faster and standardized measurements. The most frequently adopted parameter for US diagnosis of carpal tunnel syndrome is the increasing of the cross-sectional area (CSA) of the median nerve. Our aim was to develop a deep learning algorithm, relying on convolutional neural networks (CNNs), for the localization and segmentation of the median nerve and the automatic measurement of its CSA on US images acquired at the proximal inlet of the carpal tunnel. METHODS: Consecutive patients with rheumatic and musculoskeletal disorders were recruited. Transverse US images were acquired at the carpal tunnel inlet, and the CSA was manually measured. Anatomical variants were registered. The dataset consisted of 246 images (157 for training, 40 for validation, and 49 for testing) from 103 patients each associated with manual annotations of the nerve boundary. A Mask R-CNN, state-of-the-art CNN for image semantic segmentation, was trained on this dataset to accurately localize and segment the median nerve section. To evaluate the performances on the testing set, precision (Prec), recall (Rec), mean average precision (mAP), and Dice similarity coefficient (DSC) were computed. A sub-analysis excluding anatomical variants was performed. The CSA was automatically measured by the algorithm. RESULTS: The algorithm correctly identified the median nerve in 41/49 images (83.7%) and in 41/43 images (95.3%) excluding anatomical variants. The following metrics were obtained (with and without anatomical variants, respectively): Prec 0.86 ± 0.33 and 0.96 ± 0.18, Rec 0.88 ± 0.33 and 0.98 ± 0.15, mAP 0.88 ± 0.33 and 0.98 ± 0.15, and DSC 0.86 ± 0.19 and 0.88 ± 0.19. The agreement between the algorithm and the sonographer CSA measurements was excellent [ICC 0.97 (0.94-0.98)]. CONCLUSIONS: The developed algorithm has shown excellent performances, especially if excluding anatomical variants. Future research should aim at expanding the US image dataset including a wider spectrum of normal anatomy and pathology. This deep learning approach has shown very high potentiality for a fully automatic support for US assessment of carpal tunnel syndrome.


Carpal Tunnel Syndrome , Median Nerve , Carpal Tunnel Syndrome/diagnostic imaging , Humans , Median Nerve/anatomy & histology , Median Nerve/diagnostic imaging , Neural Networks, Computer , Ultrasonography/methods , Wrist/diagnostic imaging
...