Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6710): eadm8103, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38991048

RESUMEN

Understanding the drivers of respiratory pathogen spread is challenging, particularly in a timely manner during an ongoing epidemic. In this work, we present insights that we obtained using daily data from the National Health Service COVID-19 app for England and Wales and that we shared with health authorities in almost real time. Our indicator of the reproduction number R(t) was available days earlier than other estimates, with an innovative capability to decompose R(t) into contact rates and probabilities of infection. When Omicron arrived, the main epidemic driver switched from contacts to transmissibility. We separated contacts and transmissions by day of exposure and setting and found pronounced variability over days of the week and during Christmas holidays and events. For example, during the Euro football tournament in 2021, days with England matches showed sharp spikes in exposures and transmissibility. Digital contact-tracing technologies can help control epidemics not only by directly preventing transmissions but also by enabling rapid analysis at scale and with unprecedented resolution.


Asunto(s)
COVID-19 , Trazado de Contacto , SARS-CoV-2 , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Trazado de Contacto/métodos , SARS-CoV-2/aislamiento & purificación , Gales/epidemiología , Inglaterra/epidemiología , Número Básico de Reproducción , Epidemias , Aplicaciones Móviles , Vacaciones y Feriados
2.
Nature ; 626(7997): 145-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122820

RESUMEN

How likely is it to become infected by SARS-CoV-2 after being exposed? Almost everyone wondered about this question during the COVID-19 pandemic. Contact-tracing apps1,2 recorded measurements of proximity3 and duration between nearby smartphones. Contacts-individuals exposed to confirmed cases-were notified according to public health policies such as the 2 m, 15 min guideline4,5, despite limited evidence supporting this threshold. Here we analysed 7 million contacts notified by the National Health Service COVID-19 app6,7 in England and Wales to infer how app measurements translated to actual transmissions. Empirical metrics and statistical modelling showed a strong relation between app-computed risk scores and actual transmission probability. Longer exposures at greater distances had risk similar to that of shorter exposures at closer distances. The probability of transmission confirmed by a reported positive test increased initially linearly with duration of exposure (1.1% per hour) and continued increasing over several days. Whereas most exposures were short (median 0.7 h, interquartile range 0.4-1.6), transmissions typically resulted from exposures lasting between 1 h and several days (median 6 h, interquartile range 1.4-28). Households accounted for about 6% of contacts but 40% of transmissions. With sufficient preparation, privacy-preserving yet precise analyses of risk that would inform public health measures, based on digital contact tracing, could be performed within weeks of the emergence of a new pathogen.


Asunto(s)
COVID-19 , Trazado de Contacto , Aplicaciones Móviles , Salud Pública , Medición de Riesgo , Humanos , Trazado de Contacto/métodos , Trazado de Contacto/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/transmisión , Pandemias , SARS-CoV-2 , Medicina Estatal , Factores de Tiempo , Inglaterra/epidemiología , Gales/epidemiología , Modelos Estadísticos , Composición Familiar , Salud Pública/métodos , Salud Pública/tendencias
3.
Nat Commun ; 14(1): 858, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813770

RESUMEN

The NHS COVID-19 app was launched in England and Wales in September 2020, with a Bluetooth-based contact tracing functionality designed to reduce transmission of SARS-CoV-2. We show that user engagement and the app's epidemiological impacts varied according to changing social and epidemic characteristics throughout the app's first year. We describe the interaction and complementarity of manual and digital contact tracing approaches. Results of our statistical analyses of anonymised, aggregated app data include that app users who were recently notified were more likely to test positive than app users who were not recently notified, by a factor that varied considerably over time. We estimate that the app's contact tracing function alone averted about 1 million cases (sensitivity analysis 450,000-1,400,000) during its first year, corresponding to 44,000 hospital cases (SA 20,000-60,000) and 9,600 deaths (SA 4600-13,000).


Asunto(s)
COVID-19 , Aplicaciones Móviles , Humanos , SARS-CoV-2 , Medicina Estatal , Gales , Trazado de Contacto/métodos , Inglaterra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA