Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
Article En | MEDLINE | ID: mdl-38578562

Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.

2.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38263015

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Glioblastoma , Animals , Humans , Mice , Aquaporin 4 , Astrocytes , Biomarkers , Plectin , Protein Isoforms
4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article En | MEDLINE | ID: mdl-36982198

Osteoarthritis is a chronic degenerative musculoskeletal disease that worsens with age and is defined by pathological alterations in joint components. All clinical treatment recommendations for osteoarthritis promote exercise, although precise molecular pathways are unclear. The purpose of this study was to critically analyze the research on lubricin and irisin and how they relate to healthy and diseased joint tissue. Our research focused specifically on exercise strategies and offered new perspectives for future potential osteoarthritis treatment plans. Although lubricin and irisin have only recently been discovered, there is evidence that they have an impact on cartilage homeostasis. A crucial component of cartilage lubrication and integrity, lubricin is a surface-active mucinous glycoprotein released by the synovial joint. Its expression increases with joint movement. In healthy joints, lubricin molecules cover the cartilage surface to lubricate the boundary of the joint and inhibit protein and cell attachment. Patients with joint trauma, inflammatory arthritis, or genetically mediated lubricin deficiency, who do not produce enough lubricin to protect the articular cartilage, develop arthropathy. Irisin, sometimes known as the "sports hormone", is a myokine secreted primarily by skeletal muscle. It is a physiologically active protein that can enter the circulation as an endocrine factor, and its synthesis and secretion are primarily triggered by exercise-induced muscle contraction. We searched PubMed, Web of Science, Google Scholar, and Scopus using the appropriate keywords to identify the most recent research. The studies considered advance our knowledge of the role that exercise plays in the fight against osteoarthritis, serve as a valuable resource, and support the advancement of osteoarthritis prevention and therapy.


Cartilage, Articular , Joint Diseases , Osteoarthritis , Humans , Fibronectins/metabolism , Glycoproteins/metabolism , Osteoarthritis/prevention & control , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Joint Diseases/pathology
5.
Sci Rep ; 13(1): 1490, 2023 01 27.
Article En | MEDLINE | ID: mdl-36707698

Colorectal Cancer (CRC) is one of the most common cancers accounting for 1.8 million new cases worldwide every year. Therefore, the identification of new potential therapeutic targets represents a continuous challenge to improve survival and quality of CRC patient's life. We performed a microarray analysis dataset consisting of colon biopsies of healthy subjects (HS) and CRC patients. These results were further confirmed in a clinical setting evaluating a series of CRC patients to assess the expression of Resistin-Like Beta (RETNLB) and to correlate it with their clinical data. Our results showed a significant reduction of RETNLB expression in CRC biopsies compared to the HS mucosa. Furthermore, such reduction was significantly associated with the TNM grade and patients' age. Furthermore, a significantly positive correlation was found within mutated subjects for KRAS, TP53, and BRAF. In particular, patients with poor prognosis at 5 years exhibited RETNLB lower levels. In-silico analysis data were confirmed by histochemical analysis in a series of CRC patients recruited by our group. The results obtained provided that RETNLB low levels are associated with an unfavorable prognosis in CRC patients and its expression is also dependent on adjuvant therapy. Further studies are warranted in order to evaluate the molecular mechanisms underlying the role of RETNLB in CRC progression.


Colorectal Neoplasms , Humans , Biopsy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Prognosis , Resistin , Survival Rate
6.
J Neurol Sci ; 446: 120562, 2023 03 15.
Article En | MEDLINE | ID: mdl-36706688

Neurological complications of AIDS (NeuroAIDS) include primary HIV-associated neurocognitive disorder (HAND). OAS3 is an enzyme belonging to the 2', 5' oligoadenylate synthase family induced by type I interferons and involved in the degradation of both viral and endogenous RNA. Here, we used microarray datasets from NCBI of brain samples of non-demented HIV-negative controls (NDC), HIV, deceased patients with HAND and encephalitis (HIVE) (treated and untreated with antiretroviral therapy, ART), and with HAND without HIVE. The HAND/HIVE patients were stratified according to the OAS3 gene expression. The genes positively and negatively correlated to the OAS3 gene expression were used to perform a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to sixteen signatures. Expression analysis revealed significantly higher OAS3 expression in HAND/HIVE and HAND/HIVE/ART compared with NDC. OAS3 expressed an excellent diagnostic ability to discriminate NDC from HAND/HIVE, HAND from HAND/HIVE, HAND from HAND/HIVE/ART, and HIV from HAND/HIVE. Noteworthy, OAS3 expression levels in the brains of HAND/HIVE patients were positively correlated with viral load in both peripheral blood and cerebrospinal fluid (CSF). Furthermore, deconvolution analysis revealed that the genes positively correlated to OAS3 expression were associated with inflammatory signatures. Neuronal activation profiles were significantly activated by the genes negatively correlated to OAS3 expression levels. Moreover, gene ontology analysis performed on genes characterizing the microglia signature highlighted an immune response as a main biological process. According to our results, genes positively correlated to OAS3 gene expression in the brains of HAND/HIVE patients are associated with inflammatory transcriptomic signatures and likely worse cognitive impairment.


HIV Infections , HIV , Humans , HIV/genetics , HIV/metabolism , Transcriptome , HIV Infections/complications , Brain/metabolism , Neurocognitive Disorders/complications , Neurocognitive Disorders/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism
7.
Curr Neuropharmacol ; 21(3): 740-760, 2023.
Article En | MEDLINE | ID: mdl-36475335

BACKGROUND: Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep. METHODS: We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex. RESULTS: CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females. CONCLUSION: Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.


Alzheimer Disease , Male , Female , Humans , Alzheimer Disease/genetics , Sleep , Brain , Biopsy , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M3
9.
Cancer Immunol Immunother ; 72(1): 1-20, 2023 Jan.
Article En | MEDLINE | ID: mdl-35654889

Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.


Brain Neoplasms , Glioblastoma , Animals , Humans , Glioblastoma/pathology , Microglia/metabolism , Insulin-Like Growth Factor Binding Protein 6/metabolism , Insulin-Like Growth Factor Binding Protein 6/therapeutic use , Lactic Acid/metabolism , Lactic Acid/therapeutic use , Tumor Microenvironment , Zebrafish/metabolism , Cell Line, Tumor , Hedgehog Proteins , Brain Neoplasms/pathology
10.
Geroscience ; 45(1): 523-541, 2023 02.
Article En | MEDLINE | ID: mdl-36136224

Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.


Alzheimer Disease , Chitinases , Male , Female , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Transcriptome/genetics , Brain/metabolism , Biomarkers/metabolism , Chitinases/genetics , Chitinases/metabolism
11.
Pharmaceutics ; 14(12)2022 Dec 19.
Article En | MEDLINE | ID: mdl-36559338

The growing interest in natural bioactive molecules, as an approach to many pathological contexts, is widely justified by the necessity to overcome the disadvantageous benefit-risk ratio related to traditional therapies. Among them, mangiferin (MGF) shows promising beneficial properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. In this study, we aimed to investigate the antioxidant and anti-inflammatory properties of MGF on lipopolysaccharide (LPS)-induced lung NCI-H292 cells, focusing on its role against COVID-19 adsorption. In order to obtain this information, cells treated with LPS, with or without MGF, were analyzed performing wound healing, gene expression of inflammatory cytokines, GSH quantification, and JC-1 staining. Moreover, the inhibition of viral adsorption was evaluated microbiologically and the results were further confirmed by molecular docking analysis. In this regard, MGF downregulates the expression of several inflammatory factors, enhances GSH levels, promotes the wound healing rate, and restores the mitochondrial dysfunction caused by LPS. In addition, MGF significantly inhibits SARS-CoV-2 adsorption as shown by the gene expression of ACE2 and TMPRSS-2, and furtherly confirmed by microbiological and molecular modeling evaluation. Although more investigations are still needed, all data obtained constitute a solid background, demonstrating the cytoprotective role of MGF in inflammatory mechanisms including COVID-19 infection.

12.
J Neuroimmunol ; 373: 577977, 2022 12 15.
Article En | MEDLINE | ID: mdl-36228382

Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.


Alzheimer Disease , Male , Female , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Transcriptome , Brain/metabolism , Microglia/metabolism , Aging , Chitinase-3-Like Protein 1/genetics
13.
Biomedicines ; 10(9)2022 Sep 10.
Article En | MEDLINE | ID: mdl-36140348

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients.

14.
Antioxidants (Basel) ; 11(8)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36009316

Hemoglobin and iron overload is considered the major contributor to intracerebral hemorrhage (ICH)-induced brain injury. Accumulation of iron in the brain leads to microglia activation, inflammation and cell loss. Current available treatments for iron overload-mediated disorders are characterized by severe adverse effects, making such conditions an unmet clinical need. We assessed the potential of α-lipoic acid (ALA) as an iron chelator, antioxidant and anti-inflammatory agent in both in vitro and in vivo models of iron overload. ALA was found to revert iron-overload-induced toxicity in HMC3 microglia cell line, preventing cell apoptosis, reactive oxygen species generation and reducing glutathione depletion. Furthermore, ALA regulated gene expression of iron-related markers and inflammatory cytokines, such as IL-6, IL-1ß and TNF. Iron toxicity also affects mitochondria fitness and biogenesis, impairments which were prevented by ALA pre-treatment in vitro. Immunocytochemistry assay showed that, although iron treatment caused inflammatory activation of microglia, ALA treatment resulted in increased ARG1 expression, suggesting it promoted an anti-inflammatory phenotype. We also assessed the effects of ALA in an in vivo zebrafish model of iron overload, showing that ALA treatment was able to reduce iron accumulation in the brain and reduced iron-mediated oxidative stress and inflammation. Our data support ALA as a novel approach for iron-overload-induced brain damage.

15.
Pathol Res Pract ; 237: 154038, 2022 Sep.
Article En | MEDLINE | ID: mdl-35932496

Colorectal cancer (CRC) is one of the most common cancers in the world. Here, we undertook an analysis of microarray datasets consisting of colon biopsies of healthy subjects and of patients affected by CRC, in order to analyze the expression levels of Chitinase domain-containing protein 1 (CHID1) and to correlate them with the clinical data available in the datasets. Analysis of expression levels showed a significant increase of CHID1 in CRC biopsies compared to the mucosa of healthy subjects. Patients' stratification by TNM staging revealed significant increases in CHID1 expression levels as the disease progressed. Furthermore, we found that mutated BRAF patients exhibit higher levels of CHID1 expression. Patients with a poor surviving prognosis at 5 years expressed high levels of CHID1 compared to wild-type. The histochemical analysis carried out by the Human Protein Atlas web tool documented moderate to strong-intensity staining detection of CHID1 protein in CRC biopsies. Furthermore, CRC patients were selected and clustered into two groups, high and low CHID1 expression levels (HCEL and LCEL). We obtained two signatures, the genes significant positive (GSPC-CHID1) and negative (GSNC-CHID1) correlated to CHID1 expression levels. The genomic deconvolution analysis between the GSPC-CHID1, GSNC-CHID1, and 17 cell immunological signatures, highlighted the potential infiltration of Macrophages M0 in HCEL patients, and potential infiltration of Macrophages M1 cells in LCEL patients. In addition, the signature GSPC-CHID1 expressed unfavorable genes to the CRC patient's survival. Mirror results were obtained for the GSNC-CHID1 signature. From the outcome of our investigation, it is possible to conclude that HCEL are associated with an unfavorable prognosis for CRC patients.


Chitinases , Colorectal Neoplasms , Humans , Survival Rate , Colorectal Neoplasms/pathology , Chitinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Prognosis , Macrophages/pathology , Carrier Proteins/genetics
16.
Cell Prolif ; 55(10): e13310, 2022 Oct.
Article En | MEDLINE | ID: mdl-35920128

OBJECTIVE: GDF11 is a member of the TGF-ß superfamily that was recently implicated as potential "rejuvenating" factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. METHODS: We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre-adipocyte cell lines. RESULTS: Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre-adipocytes by ALK5-SMAD2/3 activation in cooperation with the WNT/ß-catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. CONCLUSION: We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11-based "anti-obesity" therapy.


Adipogenesis , beta Catenin , Adipocytes/metabolism , Adiponectin/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/physiology , Glucose/metabolism , Growth Differentiation Factors/metabolism , Humans , Insulin/metabolism , Mice , Receptor, Transforming Growth Factor-beta Type I , Smad Proteins, Receptor-Regulated , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
17.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Article En | MEDLINE | ID: mdl-35883804

It is well recognized that functional foods rich in antioxidants and antiinflammation agents including polyphenols, probiotics/prebiotics, and bioactive compounds have been found to have positive effects on the aging process. In particular, fruits play an important role in regular diet, promoting good health and longevity. In this study, we investigated on biological properties of extract obtained from Mangifera indica L. leaves in preclinical in vitro models. Specifically, the profile and content of bioactive compounds, the antimicrobial potential toward food spoilage and pathogenic bacterial species, and the eventually protective effect in inflammation were examined. Our findings revealed that MLE was rich in polyphenols, showing a content exclusively in the subclass of benzophenone/xanthone metabolites, and these phytochemical compounds demonstrated the highest antioxidant capacity and greatest in vitro antibacterial activity toward different bacterial species such as Bacillus cereus, B. subtilis, Pseudomonas fluorescens, Staphylococcus aureus, and St. haemolyticus. Furthermore, our data showed an in vitro anti-inflammatory, antioxidant, and antifibrotic activity.

18.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article En | MEDLINE | ID: mdl-35740106

Down Syndrome (DS) is a neurodevelopmental disorder that is characterized by an accelerated aging process, frequently associated with the development of Alzheimer's disease (AD). Previous studies evidenced that DS patients have various metabolic anomalies, easily measurable in their serum samples, although values that were found in DS patients were compared with those of age-matched non-DS patients, thus hampering to discriminate the physiologic age-related changes of serum metabolites from those that are truly caused by the pathologic processes associated with DS. In the present study we performed a targeted metabolomic evaluation of serum samples from DS patients without dementia of two age classes (Younger DS Patients, YDSP, aging 20-40 years; Aged DS Patients, ADSP, aging 41-60 years), comparing the results with those that were obtained in two age classes of non-DS patients (Younger non-DS Patients, YnonDSP, aging 30-60 years; Aged-nonDS Patients, AnonDSP, aging 75-90 years). Of the 36 compounds assayed, 30 had significantly different concentrations in Pooled non-DS Patients (PnonDSP), compared to Pooled DS Patients (PDSP). Age categorization revealed that 11/30 compounds were significantly different in AnonDSP, compared to YnonDSP, indicating physiologic, age-related changes of their circulating concentrations. A comparison between YDSP and ADSP showed that 19/30 metabolites had significantly different values from those found in the corresponding classes of non-DS patients, strongly suggesting pathologic, DS-associated alterations of their serum levels. Twelve compounds selectively and specifically discriminated PnonDSP from PDSP, whilst only three discriminated YDSP from ADSP. The results allowed to determine, for the first time and to the best of our knowledge, the true, age-independent alterations of metabolism that are measurable in serum and attributable only to DS. These findings may be of high relevance for better strategies (pharmacological, nutritional) aiming to specifically target the dysmetabolism and decreased antioxidant defenses that are associated with DS.

19.
Front Oncol ; 12: 871798, 2022.
Article En | MEDLINE | ID: mdl-35574309

The tumor microenvironment (TME) plays a pivotal role in establishing malignancy, and it is associated with high glycolytic metabolism and lactate release through monocarboxylate transporters (MCTs). Several lines of evidence suggest that lactate also serves as a signaling molecule through its receptor hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), thus functioning as a paracrine and autocrine signaling molecule. The aim of the present study was to investigate the role of lactate in glioblastoma (GBM) progression and metabolic reprogramming in an in vitro and in vivo model. The cell proliferation, migration, and clonogenicity were tested in vitro in three different human GBM cell lines. The expressions of MCT1, MCT4, and HCAR1 were evaluated both in vitro and in a zebrafish GBM model. The results were further validated in patient-derived GBM biopsies. Our results showed that lactate significantly increased the cell proliferation, migration, and colony formation capacity of GBM cells, both in vitro and in vivo. We also showed that lactate increased the expressions of MCT1 and HCAR1. Moreover, lactate modulated the epithelial-mesenchymal transition protein markers E-cadherin and ß-catenin. Interestingly, lactate induced mitochondrial mass and the OXPHOS gene, suggesting improved mitochondrial fitness. Similar effects were observed after treatment with 3,5-dihydroxybenzoic acid, a known agonist of HCAR1. Consistently, the GBM zebrafish model exhibited an altered metabolism and increased expressions of MCT1 and HCAR1, leading to high levels of extracellular lactate and, thus, supporting tumor cell proliferation. Our data from human GBM biopsies also showed that, in high proliferative GBM biopsies, Ki67-positive cells expressed significantly higher levels of MCT1 compared to low proliferative GBM cells. In conclusion, our data suggest that lactate and its transporter and receptor play a major role in GBM proliferation and migration, thus representing a potential target for new therapeutic strategies to counteract tumor progression and recurrence.

20.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Article En | MEDLINE | ID: mdl-35453452

Relapse in multiple myeloma (MM) decreases therapy efficiency through unclear mechanisms of chemoresistance. Since our group previously demonstrated that heme oxygenase-1 (HO-1) and Toll-like receptor 4 (TLR4) are two signaling pathways protecting MM cells from the proteasome inhibitor bortezomib (BTZ), we here evaluated their cross-regulation by a pharmacological approach. We found that cell toxicity and mitochondrial depolarization by BTZ were increased upon inhibition of HO-1 and TLR4 by using tin protoporphyrin IX (SnPP) and TAK-242, respectively. Furthermore, the combination of TAK-242 and BTZ activated mitophagy and decreased the unfolded protein response (UPR) survival pathway in association with a downregulation in HO-1 expression. Notably, BTZ in combination with SnPP induced effects mirroring the treatment with TAK-242/BTZ, resulting in a blockade of TLR4 upregulation. Interestingly, treatment of cells with either hemin, an HO-1 inducer, or supplementation with carbon monoxide (CO), a by-product of HO-1 enzymatic activity, increased TLR4 expression. In conclusion, we showed that treatment of MM cells with BTZ triggers the TLR4/HO-1/CO axis, serving as a stress-responsive signal that leads to increased cell survival while protecting mitochondria against BTZ and ultimately promoting drug resistance.

...