Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Exp Clin Cancer Res ; 43(1): 77, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475864

BACKGROUND: The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS: We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS: ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION: In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.


Glioma , Zebrafish , Mice , Animals , Cell Line, Tumor , DNA Repair , DNA Damage , Ataxia Telangiectasia Mutated Proteins/metabolism
2.
Eur J Immunol ; 52(2): 261-269, 2022 02.
Article En | MEDLINE | ID: mdl-34731490

The differentiation of T cells from lymphoid progenitors in the thymus follows sequential developmental stages that constantly require interaction with thymic epithelial cells. Several distinct aspects of early T cell development depend on the activation of Notch receptors on thymocytes, while the selection of thymocytes at later stages are believed to be Notch independent. Using reverse genetic approaches and whole-thymus live imaging in an in vivo teleost model, the medaka, we report that Notch1 signals is required for proliferation and specification of developing T cells as well as involved in their selection in the thymus. We reveal that Notch1 controls the migratory behavior of thymocytes through controlling the chemokine receptor Ccr9b and thereby influence the T cell receptor (TCR) activation. Hence, we propose that, in lower vertebrates, the function of Notch signaling extends to all stages of T cell development, except when thymocytes undergo TCRß rearrangement.


Cell Movement , Fish Proteins/immunology , Oryzias , Receptor, Notch1/deficiency , Signal Transduction , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Cell Movement/genetics , Cell Movement/immunology , Fish Proteins/deficiency , Oryzias/genetics , Oryzias/immunology , Receptor, Notch1/immunology , Signal Transduction/genetics , Signal Transduction/immunology
3.
Sci Adv ; 7(29)2021 Jul.
Article En | MEDLINE | ID: mdl-34261656

αß and γδ T cells are two distinct sublineages that develop in the vertebrate thymus. Thus far, their differentiation from a common progenitor is mostly understood to be regulated by intrinsic mechanisms. However, the proportion of αß/γδ T cells varies in different vertebrate taxa. How this process is regulated in species that tend to produce a high frequency of γδ T cells is unstudied. Using an in vivo teleost model, the medaka, we report that progenitors first enter a thymic niche where their development into γδ T cells is favored. Translocation from this niche, mediated by chemokine receptor Ccr9b, is a prerequisite for their differentiation into αß T cells. On the other hand, the thymic niche also generates opposing gradients of the cytokine interleukin-7 and chemokine Ccl25a, and, together, they influence the lineage outcome. We propose a previously unknown mechanism that determines the proportion of αß/γδ lineages within species.

4.
Haematologica ; 106(5): 1311-1320, 2021 05 01.
Article En | MEDLINE | ID: mdl-32327498

Severe congenital neutropenia (CN) is a rare heterogeneous group of diseases, characterized by a granulocytic maturation arrest. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated CN. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we have found that interference with the Hax1 function decreases the expression level of key target genes of the granulocyte-colony stimulating factor (G-CSF) signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by G-CSF, which is also the main therapeutic intervention for patients who have CN. Our results demonstrate that zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for CN patients, particularly for those individuals that do not respond to the G-CSF treatment.


Neutropenia , Zebrafish , Adaptor Proteins, Signal Transducing/genetics , Animals , Congenital Bone Marrow Failure Syndromes , Granulocyte Colony-Stimulating Factor , Humans , Mutation , Neutropenia/chemically induced , Neutropenia/congenital , Neutropenia/genetics , Zebrafish/genetics
5.
Int J Mol Sci ; 20(17)2019 Aug 26.
Article En | MEDLINE | ID: mdl-31454991

Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.


Oryzias/embryology , Oryzias/immunology , T-Lymphocytes/cytology , T-Lymphocytes/physiology , Thymus Gland/embryology , Zebrafish/embryology , Zebrafish/immunology , Animals , Biomarkers , Cell Differentiation , Genetic Testing , Humans , Molecular Imaging , Organogenesis , Species Specificity
...