Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38948747

RESUMEN

SARS-CoV-2 virus has continued to evolve over time necessitating the adaptation of vaccines to maintain efficacy. Monoclonal antibodies (mAbs) against SARS-CoV-2 were a key line of defense for unvaccinated or immunocompromised individuals. However, these mAbs are now ineffective against current SARS-CoV-2 variants. Here, we tested three aspects of αSARS-CoV-2 therapeutics. First, we tested whether Fc engagement is necessary for in vivo clearance of SARS-CoV-2. Secondly, we tested bi-specific killer engagers (BiKEs) that simultaneously engage SARS-CoV-2 and a specific Fc receptor. Benefits of these engagers include the ease of manufacturing, stability, more cell-specific targeting, and high affinity binding to Fc receptors. Using both mAbs and BiKEs, we found that both neutralization and Fc receptor engagement were necessary for effective SARS-CoV-2 clearance. Thirdly, due to ACE2 being necessary for viral entry, ACE2 will maintain binding to SARS-CoV-2 despite viral evolution. Therefore, we used an ACE2 decoy Fc-fusion or BiKE, instead of an anti-SARS-CoV-2 antibody sequence, as a potential therapeutic that would withstand viral evolution. We found that the ACE2 decoy approach also required Fc receptor engagement and, unlike traditional neutralizing antibodies against specific variants, enabled the clearance of two distinct SARS-CoV-2 variants. These data show the importance of Fc engagement for mAbs, the utility of BiKEs as therapies for infectious disease, and the in vivo effectiveness of the ACE2 decoy approach. With further studies, we predict combining neutralization, the cellular response, and this ACE2 decoy approach will benefit individuals with ineffective antibody levels. Abbreviations: ACE2, scFv, mAb, BiKE, COVID-19, Fc, CD16, CD32b, CD64, d.p.i. Key points: With equal dosing, both neutralization and Fc engagement are necessary for the optimal efficacy of in vivo antibodies and bi-specific killer engagers (BiKEs) against SARS-CoV-2. BiKEs can clear SARS-CoV-2 virus and protect against severe infection in the hACE2-K18 mouse model. ACE2 decoys as part of Fc-fusions or BiKEs provide in vivo clearance of two disparate SARS-CoV-2 variants.

2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798324

RESUMEN

Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.

3.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659969

RESUMEN

Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.

4.
Front Immunol ; 14: 1267774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928543

RESUMEN

In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-ß inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.


Asunto(s)
Células Asesinas Naturales , Virosis , Humanos , Virosis/terapia , Inmunoterapia Adoptiva
6.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881874

RESUMEN

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Quinasa Syk/genética , Sistemas CRISPR-Cas , Células Asesinas Naturales , Citocinas , Citotoxicidad Celular Dependiente de Anticuerpos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...