Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
J Med Chem ; 65(23): 15935-15966, 2022 12 08.
Article En | MEDLINE | ID: mdl-36441509

An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 (4) was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in 4 with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound 26 exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds. In pharmacokinetic studies, 26 had low clearance and exhibited 24 and 31% oral bioavailability in rats and dogs, respectively.


HIV-1 , Animals , Dogs , Rats , Amines/pharmacology , Structure-Activity Relationship
2.
J Med Chem ; 65(18): 11927-11948, 2022 09 22.
Article En | MEDLINE | ID: mdl-36044257

GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.


Anti-HIV Agents , HIV-1 , Triterpenes , Humans , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Benzoic Acid/chemistry , Carbon , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use
3.
ACS Med Chem Lett ; 13(6): 972-980, 2022 Jun 09.
Article En | MEDLINE | ID: mdl-35707159

Allosteric HIV-1 integrase inhibitors (ALLINIs) have been of interest recently because of their novel mechanism of action. Strategic modifications to the C5 moiety of a class of 4-(4,4-dimethylpiperidinyl)-2,6-dimethylpyridinyl ALLINIs led to the identification of a tetrahydroisoquinoline heterocycle as a suitable spacer element to project the distal hydrophobic aryl ring. Subsequent optimization of the aryl substitutions identified 12 as an ALLINI with single-digit nanomolar inhibitory potency and low clearance across preclinical species. In preclinical toxicology studies with 12 in rats, lipid hepatocellular vacuolation was observed. Removal of the C6 methyl group resulted in GSK3839919 (22), which exhibited a reduced incidence and severity of lipid vacuolation in both in vitro assays and in vivo studies while maintaining the potency and pharmacokinetic (PK) properties of the prototype. The virology, PK, and toxicology profiles of 22 are discussed.

4.
Bioorg Med Chem ; 67: 116833, 2022 08 01.
Article En | MEDLINE | ID: mdl-35605346

Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies. The 1,2,4-triazolopyridines showed a higher oral exposure when compared to the imidazopyridines. Further modifications to the C5 substituent of the 1,2,4-triazolopyridines resulted in a new lead compound, which had improved rat IV/PO PK compared to the former lead compound GSK3739936, while maintaining antiviral potency. Structure-activity relationships (SAR) and rat pharmacokinetic profiles of this series are discussed.


Anti-HIV Agents , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Allosteric Regulation , Animals , Anti-HIV Agents/pharmacology , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/metabolism , Rats
5.
Antimicrob Agents Chemother ; 66(1): e0187621, 2022 01 18.
Article En | MEDLINE | ID: mdl-34780263

HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK'254) resulted in up to a 2-log10 viral load reduction in a phase IIa proof-of-concept study. In vitro experiments have defined the antiviral and resistance profiles for GSK'254. The compound displayed strong antiviral activity against a library of subtype B and C chimeric viruses containing Gag polymorphisms and site-directed mutants previously shown to affect potency of earlier-generation MIs, with a mean protein-binding adjusted 90% effective concentration (EC90) of 33 nM. Furthermore, GSK'254 exhibited robust antiviral activity against a panel of HIV-1 clinical isolates, with a mean EC50 of 9 nM. Mechanistic studies established that bound GSK'254 dissociated on average 7.1-fold more slowly from wild-type Gag virus-like particles (VLPs) than a previous-generation MI. In resistance studies, the previously identified A364V Gag region mutation was selected under MI pressure in cell culture and during the phase IIa clinical study. As expected, GSK'254 inhibited cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Virus-like particles containing the A364V mutation exhibited a p25 cleavage rate 9.3 times higher than wild-type particles, providing a possible mechanism for MI resistance. The findings demonstrate that GSK'254 potently inhibits a broad range of HIV-1 strains expressing Gag polymorphisms.


HIV-1 , Triterpenes , Drug Resistance, Viral/genetics , Succinates/pharmacology , Triterpenes/pharmacology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
6.
Bioorg Med Chem Lett ; 36: 127823, 2021 03 15.
Article En | MEDLINE | ID: mdl-33508465

GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.


Anti-HIV Agents/pharmacology , Benzoic Acid/pharmacology , Drug Design , HIV-1/drug effects , Triterpenes/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Benzoic Acid/chemical synthesis , Benzoic Acid/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry
7.
Bioorg Med Chem ; 28(13): 115541, 2020 07 01.
Article En | MEDLINE | ID: mdl-32389483

The design, synthesis and structure-activity relationships associated with a series of bridged tricyclic pyrimidinone carboxamides as potent inhibitors of HIV-1 integrase strand transfer are described. Structural modifications to these molecules were made in order to examine the effect on potency towards wild-type and clinically-relevant resistant viruses. The [3.2.2]-bridged tricyclic system was identified as an advantageous chemotype, with representatives exhibiting excellent antiviral activity against both wild-type viruses and the G140S/Q148H resistant virus that arises in response to therapy with raltegravir and elvitegravir.


Antiviral Agents/chemical synthesis , HIV Infections/drug therapy , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/metabolism , Imidazoles/chemical synthesis , Pyrrolidinones/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Drug Therapy, Combination , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Humans , Imidazoles/pharmacology , Mutation , Quinolones/pharmacology , Raltegravir Potassium/pharmacology , Structure-Activity Relationship
8.
J Med Chem ; 63(5): 2620-2637, 2020 03 12.
Article En | MEDLINE | ID: mdl-32081010

The standard of care for HIV-1 infection, highly active antiretroviral therapy (HAART), combines two or more drugs from at least two classes. Even with the success of HAART, new drugs with novel mechanisms are needed to combat viral resistance, improve adherence, and mitigate toxicities. Active site inhibitors of HIV-1 integrase are clinically validated for the treatment of HIV-1 infection. Here we describe allosteric inhibitors of HIV-1 integrase that bind to the LEDGF/p75 interaction site and disrupt the structure of the integrase multimer that is required for the HIV-1 maturation. A series of pyrazolopyrimidine-based inhibitors was developed with a vector in the 2-position that was optimized by structure-guided compound design. This resulted in the discovery of pyrazolopyrimidine 3, which was optimized at the 2- and 7-positions to afford 26 and 29 as potent allosteric inhibitors of HIV-1 integrase that exhibited low nanomolar antiviral potency in cell culture and encouraging PK properties.


Allosteric Regulation/drug effects , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Administration, Oral , Animals , Drug Discovery , HIV Infections/drug therapy , HIV Infections/virology , HIV Integrase/metabolism , HIV Integrase Inhibitors/administration & dosage , HIV Integrase Inhibitors/pharmacokinetics , Humans , Male , Molecular Docking Simulation , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats, Sprague-Dawley
9.
Bioorg Med Chem Lett ; 30(3): 126784, 2020 02 01.
Article En | MEDLINE | ID: mdl-31761656

A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.


Amides/chemistry , HIV Integrase Inhibitors/chemistry , HIV Integrase/chemistry , HIV-1/enzymology , Heterocyclic Compounds, 3-Ring/chemistry , Animals , Binding Sites , Catalytic Domain , Drug Resistance, Viral/drug effects , HIV Integrase/genetics , HIV Integrase/metabolism , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , Half-Life , Heterocyclic Compounds, 3-Ring/metabolism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Molecular Dynamics Simulation , Mutation , Rats , Structure-Activity Relationship
10.
PLoS One ; 14(10): e0224076, 2019.
Article En | MEDLINE | ID: mdl-31622432

GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants.


Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , Anti-HIV Agents/pharmacology , Capsid Proteins/genetics , Genotype , HIV Protease/genetics , HIV-1/genetics , HIV-1/isolation & purification , HIV-1/physiology , Humans , Mutation , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/genetics
11.
ACS Med Chem Lett ; 10(3): 287-294, 2019 Mar 14.
Article En | MEDLINE | ID: mdl-30891128

The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.

12.
PLoS One ; 13(10): e0205368, 2018.
Article En | MEDLINE | ID: mdl-30352054

GSK3532795 (formerly known as BMS-955176) is a second-generation maturation inhibitor targeting a specific Gag cleavage site between capsid p24 and spacer peptide 1 of HIV-1. Study 205891 (previously AI468038) investigated the efficacy, safety, and dose response of GSK3532795 in treatment-naive, HIV-1-infected participants. Study 205891 (NCT02415595) was a Phase IIb, randomized, active-controlled, double-blind, international trial. Participants were randomized 1:1:1:1 to one of three GSK3532795 arms at doses 60 mg, 120 mg or 180 mg once daily (QD), or to efavirenz (EFV) at 600 mg QD, each in combination with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) (300/200 mg QD). Primary endpoint was proportion of participants with plasma HIV-1 RNA <40 copies/mL at Week 24. Between May 2015 and May 2016, 206 participants received treatment. At Week 24, 76-83% participants receiving GSK3532795 and 77% receiving EFV achieved HIV-1 RNA <40 copies/mL. Fifteen participants receiving GSK3532795 and one receiving EFV met resistance testing criteria; 10/15 receiving GSK3532795 had emergent substitutions at reverse transcriptase positions M184, and one at position K65, while the participant receiving EFV did not have any nucleoside reverse transcriptase inhibitor (NRTI)/non-NRTI mutations. EFV, relative to GSK3532795, had more serious adverse events (9% versus 5%) and adverse events leading to discontinuation (17% versus 5%). However, 3-4-fold higher rates of gastrointestinal adverse events were observed with GSK3532795 relative to EFV. GSK3532795 combined with TDF/FTC is efficacious with 24 weeks of therapy. However, GSK3532795 showed a higher rate of gastrointestinal intolerability and treatment-emergent resistance to the NRTI backbone relative to EFV. Trial registration: ClinicalTrials.gov NCT02415595.


Anti-HIV Agents/therapeutic use , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Tenofovir/therapeutic use , Triterpenes/therapeutic use , Adult , Alkynes , Anti-HIV Agents/pharmacokinetics , Benzoxazines/pharmacokinetics , Benzoxazines/therapeutic use , Cyclopropanes , Double-Blind Method , Drug Administration Schedule , Drug Resistance, Viral , Drug Therapy, Combination , Emtricitabine/pharmacokinetics , Female , HIV-1/genetics , HIV-1/isolation & purification , Half-Life , Humans , Male , Middle Aged , RNA, Viral/blood , Tenofovir/pharmacokinetics , Treatment Outcome , Triterpenes/pharmacokinetics
13.
J Med Chem ; 61(16): 7289-7313, 2018 08 23.
Article En | MEDLINE | ID: mdl-30067361

GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.


Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Chrysenes/chemistry , Morpholines/chemistry , Structure-Activity Relationship , Triterpenes/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Administration, Oral , Animals , Anti-HIV Agents/pharmacokinetics , Benzoic Acid/chemistry , Biological Availability , Chemistry Techniques, Synthetic , Chrysenes/pharmacology , Dogs , Drug Design , Drug Stability , HIV-1/drug effects , HIV-1/genetics , Humans , Macaca fascicularis , Male , Mice, Inbred Strains , Mice, Knockout , Microsomes, Liver/drug effects , Morpholines/pharmacology , Polymorphism, Genetic , Rats, Sprague-Dawley , Triterpenes/pharmacology
14.
Bioorg Med Chem Lett ; 28(12): 2124-2130, 2018 07 01.
Article En | MEDLINE | ID: mdl-29779976

BMS-707035 is an HIV-1 integrase strand transfer inhibitor (INSTI) discovered by systematic optimization of N-methylpyrimidinone carboxamides guided by structure-activity relationships (SARs) and the single crystal X-ray structure of compound 10. It was rationalized that the unexpectedly advantageous profiles of N-methylpyrimidinone carboxamides with a saturated C2-substitutent may be due, in part, to the geometric relationship between the C2-substituent and the pyrimidinone core. The single crystal X-ray structure of 10 provided support for this reasoning and guided the design of a spirocyclic series 12 which led to discovery of the morpholino-fused pyrimidinone series 13. Several carboxamides derived from this bicyclic scaffold displayed improved antiviral activity and pharmacokinetic profiles when compared with corresponding spirocyclic analogs. Based on the excellent antiviral activity, preclinical profiles and acceptable in vitro and in vivo toxicity profiles, 13a (BMS-707035) was selected for advancement into phase I clinical trials.


Anti-HIV Agents/pharmacology , Drug Discovery , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV/drug effects , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , Thiazines/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/chemistry
15.
Bioorg Med Chem Lett ; 28(9): 1550-1557, 2018 05 15.
Article En | MEDLINE | ID: mdl-29631960

The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum. However, plasma exposure of basic amines following oral administration to rats was generally low, leading to a focus on moderating the basicity of the amine moiety distal from the triterpene core. The thiomorpholine dioxide (TMD) 20 emerged from this study as a compound with the optimal antiviral activity and an acceptable pharmacokinetic profile in the C-28 amine series. Compared to the C-28 amide 3, 20 offers a 2- to 4-fold improvement in potency towards the screening viruses, exhibits low shifts in the EC50 values toward the V370A and ΔV370 viruses in the presence of human serum or human serum albumin, and demonstrates improved potency towards the polymorphic T371A and V362I virus variants.


Amines/pharmacology , Anti-HIV Agents/pharmacology , Drug Design , HIV-1/drug effects , Triterpenes/pharmacology , Amines/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Conformation , Pentacyclic Triterpenes , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry , Betulinic Acid
16.
Clin Infect Dis ; 65(3): 442-452, 2017 Aug 01.
Article En | MEDLINE | ID: mdl-28369211

BACKGROUND: GSK3532795 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor that targets HIV-1 Gag, inhibiting the final protease cleavage between capsid protein p24 and spacer protein-1, producing immature, noninfectious virions. METHODS: This was a phase 2a, randomized, dose-ranging multipart trial. In part A, subtype B-infected subjects received 5-120 mg GSK3532795 (or placebo) once daily for 10 days. In part B, subtype B-infected subjects received 40 mg or 80 mg GSK3532795 once daily with atazanavir (ATV) with or without (±) ritonavir (RTV) or standard of care (SOC) (tenofovir disoproxil fumarate 300 mg, emtricitabine 200 mg, and ATV/RTV 300 mg/100 mg) for 28 days. In part C, subtype C-infected subjects received 40 mg or 120 mg GSK3532795 once daily (or placebo) for 10 days. Endpoints included change in HIV-1 RNA from baseline on day 11 (parts A/C) or day 29 (part B). RESULTS: A >1 log10 median decline in HIV-1 RNA was achieved by day 11 in parts A and C and day 29 in part B at GSK3532795 doses ≥40 mg; part B subjects receiving GSK3532795 and ATV ± RTV achieved similar declines to those receiving SOC. Median of the maximum declines in HIV-1 RNA were similar for the 40-120 mg once-daily dose groups regardless of baseline Gag polymorphisms. There were no deaths, adverse events leading to discontinuation, or serious adverse events. CONCLUSIONS: GSK3532795 demonstrated potent antiviral activity against subtype B (monotherapy or with ATV ± RTV) and subtype C, and was generally well tolerated, which supported continued development of GSK3532795 in subjects with HIV-1 subtype B or subtype C. CLINICAL TRIALS REGISTRATION: NCT01803074.


Atazanavir Sulfate , HIV Infections/drug therapy , HIV Protease Inhibitors , Ritonavir , Adult , Atazanavir Sulfate/administration & dosage , Atazanavir Sulfate/adverse effects , Atazanavir Sulfate/therapeutic use , Female , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/adverse effects , HIV Protease Inhibitors/therapeutic use , Humans , Male , Middle Aged , RNA, Viral/blood , Ritonavir/administration & dosage , Ritonavir/adverse effects , Ritonavir/therapeutic use , Young Adult
17.
J Acquir Immune Defic Syndr ; 75(1): 52-60, 2017 05 01.
Article En | MEDLINE | ID: mdl-28234686

BACKGROUND: Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). METHODS: Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] <3 were considered to be within the no-effect level. RESULTS: All nonlongitudinal viruses tested were sensitive to GSK3532795 (FC-IC50 range 0.16-0.68). Among longitudinal isolates, all post-PI treatment samples had major PI resistance-associated mutations in PR and 17/21 had PI resistance-associated changes in Gag. Nineteen of the 21 post-PI treatment samples had GSK3532795 CFB <3. Median (range) CFB was 0.83 (0.05-27.4) [Monogram (11 patients)] and 1.5 (1.0-2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. CONCLUSIONS: GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy.


Drug Resistance, Viral , HIV Infections/virology , HIV Protease Inhibitors/pharmacology , HIV/drug effects , HIV/isolation & purification , Genotype , Genotyping Techniques , HIV/genetics , HIV Protease/genetics , Humans , Inhibitory Concentration 50 , Longitudinal Studies , Microbial Sensitivity Tests , Mutation, Missense , gag Gene Products, Human Immunodeficiency Virus/genetics
18.
PLoS Pathog ; 12(11): e1005990, 2016 Nov.
Article En | MEDLINE | ID: mdl-27893830

HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics. Antiviral assay data indicates that BVM does not achieve 100% inhibition of certain polymorphs, even at saturating concentrations. This results in the breakthrough of infectious virus (partial antagonism) regardless of BVM concentration. Reduced maximal percent inhibition (MPI) values for BVM correlated with elevated EC50 values, while rates of HIV-1 protease cleavage at CA/SP1 correlated inversely with the ability of BVM to inhibit HIV-1 Gag polymorphic viruses: genotypes with more rapid CA/SP1 cleavage kinetics were less sensitive to BVM. In vitro inhibition of wild type VLP CA/SP1 cleavage by BVM was not maintained at longer cleavage times. BMS-955176 exhibited greatly improved MPI against polymorphic Gag viruses, binds to Gag polymorphs with higher affinity/longer dissociation half-lives and exhibits greater time-independent inhibition of CA/SP1 cleavage compared to BVM. Virological (MPI) and biochemical (CA/SP1 cleavage rates, MI-specific Gag affinities) data were used to create an integrated semi-quantitative model that quantifies CA/SP1 cleavage rates as a function of both MI and Gag polymorph. The model outputs are in accord with in vitro antiviral observations and correlate with observed in vivo MI efficacies. Overall, these findings may be useful to further understand antiviral profiles and clinical responses of MIs at a basic level, potentially facilitating further improvements to MI potency and coverage.


Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV-1/drug effects , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/genetics , Cell Line , HIV-1/genetics , Humans , Microbial Sensitivity Tests , Succinates/pharmacology , Triterpenes/pharmacology , Virus Assembly/drug effects
19.
ACS Med Chem Lett ; 7(6): 568-72, 2016 Jun 09.
Article En | MEDLINE | ID: mdl-27326328

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

20.
Antimicrob Agents Chemother ; 60(7): 3956-69, 2016 07.
Article En | MEDLINE | ID: mdl-27090171

BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


Anti-HIV Agents/pharmacology , HIV-1/drug effects , gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Drug Resistance, Viral/genetics , HIV-1/metabolism , Humans , Succinates/pharmacology , Triterpenes/pharmacology , Virus Replication/drug effects
...