Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(3): e0053422, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467395

RESUMEN

Staphylococcus aureus is one of the most common pathogens associated with infection in wounds. The current standard of care uses a combination of disinfection and drainage followed by conventional antibiotics such as methicillin. Methicillin and vancomycin resistance has rendered these treatments ineffective, often causing the reemergence of infection. This study examines the use of antimicrobial peptoids (sequence-specific poly-N-substituted glycines) designed to mimic naturally occurring cationic, amphipathic host defense peptides, as an alternative to conventional antibiotics. These peptoids also show efficient and fast (<30 min) killing of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at low micromolar concentrations without having apparent cytotoxic side effects in vivo. Additionally, these novel peptoids show excellent efficacy against biofilm formation and detachment for both MSSA and MRSA. In comparison, conventional antibiotics were unable to detach or prevent formation of biofilms. One cationic 12mer, Peptoid 1, shows great promise, as it could prevent formation of and detach biofilms at concentrations as low as 1.6 µM. The use of a bioluminescent S. aureus murine incision wound model demonstrated clearance of infection in peptoid-treated mice within 8 days, conveying another advantage these peptoids have over conventional antibiotics. These results provide clear evidence of the potential for antimicrobial peptoids for the treatment of S. aureus wound infections. IMPORTANCE Staphylococcus aureus resistance is a consistent problem with a large impact on the health care system. Infections with resistant S. aureus can cause serious adverse effects and can result in death. These antimicrobial peptoids show efficient killing of bacteria both as a biofilm and as free bacteria, often doing so in less than 30 min. As such, these antimicrobials have the potential to alleviate the burden that Staphylococcus infections have on the health care system and cause better outcomes for infected patients.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Peptoides , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas , Meticilina , Ratones , Pruebas de Sensibilidad Microbiana , Peptoides/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Catelicidinas
2.
Sci Rep ; 8(1): 6795, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717157

RESUMEN

Acute lung injury (ALI) leads to progressive loss of breathing capacity and hypoxemia, as well as pulmonary surfactant dysfunction. ALI's pathogenesis and management are complex, and it is a significant cause of morbidity and mortality worldwide. Exogenous surfactant therapy, even for research purposes, is impractical for adults because of the high cost of current surfactant preparations. Prior in vitro work has shown that poly-N-substituted glycines (peptoids), in a biomimetic lipid mixture, emulate key biophysical activities of lung surfactant proteins B and C at the air-water interface. Here we report good in vivo efficacy of a peptoid-based surfactant, compared with extracted animal surfactant and a synthetic lipid formulation, in a rat model of lavage-induced ALI. Adult rats were subjected to whole-lung lavage followed by administration of surfactant formulations and monitoring of outcomes. Treatment with a surfactant protein C mimic formulation improved blood oxygenation, blood pH, shunt fraction, and peak inspiratory pressure to a greater degree than surfactant protein B mimic or combined formulations. All peptoid-enhanced treatment groups showed improved outcomes compared to synthetic lipids alone, and some formulations improved outcomes to a similar extent as animal-derived surfactant. Robust biophysical mimics of natural surfactant proteins may enable new medical research in ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Peptoides/farmacología , Proteína B Asociada a Surfactante Pulmonar/farmacología , Proteína C Asociada a Surfactante Pulmonar/farmacología , Surfactantes Pulmonares/farmacología , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Presiones Respiratorias Máximas , Imitación Molecular , Peptoides/síntesis química , Proteína B Asociada a Surfactante Pulmonar/química , Proteína C Asociada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
3.
Sci Rep ; 7(1): 16718, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196622

RESUMEN

Many organisms rely on antimicrobial peptides (AMPs) as a first line of defense against pathogens. In general, most AMPs are thought to kill bacteria by binding to and disrupting cell membranes. However, certain AMPs instead appear to inhibit biomacromolecule synthesis, while causing less membrane damage. Despite an unclear understanding of mechanism(s), there is considerable interest in mimicking AMPs with stable, synthetic molecules. Antimicrobial N-substituted glycine (peptoid) oligomers ("ampetoids") are structural, functional and mechanistic analogs of helical, cationic AMPs, which offer broad-spectrum antibacterial activity and better therapeutic potential than peptides. Here, we show through quantitative studies of membrane permeabilization, electron microscopy, and soft X-ray tomography that both AMPs and ampetoids trigger extensive and rapid non-specific aggregation of intracellular biomacromolecules that correlates with microbial death. We present data demonstrating that ampetoids are "fast killers", which rapidly aggregate bacterial ribosomes in vitro and in vivo. We suggest intracellular biomass flocculation is a key mechanism of killing for cationic, amphipathic AMPs, which may explain why most AMPs require micromolar concentrations for activity, show significant selectivity for killing bacteria over mammalian cells, and finally, why development of resistance to AMPs is less prevalent than developed resistance to conventional antibiotics.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Peptoides/farmacología , Secuencia de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Biomasa , Hemólisis/efectos de los fármacos , Humanos , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía Electrónica de Rastreo , Peptoides/química , Peptoides/metabolismo , Permeabilidad , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...