Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6714): 1241-1244, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39265005

RESUMEN

Macroscopic properties of materials stem from fundamental atomic-scale details, yet for insulators, resolving surface structures remains a challenge. We imaged the basal (0001) plane of α-aluminum oxide (α-Al2O3) using noncontact atomic force microscopy with an atomically defined tip apex. The surface formed a complex ([Formula: see text] × [Formula: see text])R±9° reconstruction. The lateral positions of the individual oxygen and aluminum surface atoms come directly from experiment; we determined with computational modeling how these connect to the underlying crystal bulk. Before the restructuring, the surface Al atoms assume an unfavorable, threefold planar coordination; the reconstruction allows a rehybridization with subsurface O that leads to a substantial energy gain. The reconstructed surface remains stoichiometric, Al2O3.

2.
ACS Nano ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39293063

RESUMEN

Determining the local coordination of the active site is a prerequisite for the reliable modeling of single-atom catalysts (SACs). Obtaining such information is difficult on powder-based systems and much emphasis is placed on density functional theory computations based on idealized low-index surfaces of the support. In this work, we investigate how Pt atoms bind to the (11̅02) facet of α-Fe2O3; a common support material in SACs. Using a combination of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and an extensive computational evolutionary search, we find that Pt atoms significantly reconfigure the support lattice to facilitate a pseudolinear coordination to surface oxygen atoms. Despite breaking three surface Fe-O bonds, this geometry is favored by 0.84 eV over the best configuration involving an unperturbed support. We suggest that the linear O-Pt-O configuration is common in reactive Pt-based SAC systems because it balances thermal stability with the ability to adsorb reactants from the gas phase. Moreover, we conclude that extensive structural searches are necessary to determine realistic active site geometries in single-atom catalysis.

3.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847580

RESUMEN

Infrared Reflection Absorption Spectroscopy (IRAS) on dielectric single crystals is challenging because the optimal incidence angles for light-adsorbate interaction coincide with regions of low IR reflectivity. Here, we introduce an optimized IRAS setup that maximizes the signal-to-noise ratio for non-metals. This is achieved by maximizing light throughput and by selecting optimal incidence angles that directly impact the peak heights in the spectra. The setup uses a commercial Fourier transform infrared spectrometer and is usable in ultra-high vacuum (UHV). Specifically, the optical design features sample illumination and collection mirrors with a high numerical aperture inside the UHV system and adjustable apertures to select the incidence angle range on the sample. This is important for p-polarized measurements on dielectrics because the peaks in the spectra reverse the direction at the Brewster angle (band inversion). The system components are connected precisely via a single flange, ensuring long-term stability. We studied the signal-to-noise ratio (SNR) variation in p-polarized IRAS spectra for one monolayer of CO on TiO2(110) as a function of incidence angle range, where a maximum SNR of 70 was achieved at 4 cm-1 resolution in a measurement time of 5 min. The capabilities for s polarization are demonstrated by measuring one monolayer D2O adsorbed on a TiO2(110) surface, where a SNR of 65 was achieved at a peak height ΔR/R0 of 1.4 × 10-4 in 20 min.

4.
ACS Nano ; 18(15): 10397-10406, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557003

RESUMEN

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-κ layered dielectrics for devices based on van der Waals structures has been relatively limited. In this work, we demonstrate an easily reproducible synthesis method for the rare-earth oxyhalide LaOBr, and we exfoliate it as a 2D layered material with a measured static dielectric constant of 9 and a wide bandgap of 5.3 eV. Furthermore, our research demonstrates that LaOBr can be used as a high-κ dielectric in van der Waals field-effect transistors with high performance and low interface defect concentrations. Additionally, it proves to be an attractive choice for electrical gating in excitonic devices based on 2D materials. Our work demonstrates the versatile realization and functionality of 2D systems with wide-gap and high-κ van der Waals dielectric environments.

5.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666570

RESUMEN

The interaction between ammonia (NH3) and (alumino)silicates is of fundamental and applied importance, yet the specifics of NH3 adsorption on silicate surfaces remain largely unexplored, mainly because of experimental challenges related to their electrically insulating nature. An example of this knowledge gap is evident in the context of ice nucleation on silicate dust, wherein the role of NH3 for ice nucleation remains debated. This study explores the fundamentals of the interaction between NH3 and microcline feldspar (KAlSi3O8), a common aluminosilicate with outstanding ice nucleation abilities. Atomically resolved non-contact atomic force microscopy, x-ray photoelectron spectroscopy, and density functional theory-based calculations elucidate the adsorption geometry of NH3 on the lowest-energy surface of microcline, the (001) facet, and its interplay with surface hydroxyls and molecular water. NH3 and H2O are found to adsorb molecularly in the same adsorption sites, creating H-bonds with the proximate surface silanol (Si-OH) and aluminol (Al-OH) groups. Despite the closely matched adsorption energies of the two molecules, NH3 readily yields to replacement by H2O, challenging the notion that ice nucleation on microcline proceeds via the creation of an ordered H2O layer atop pre-adsorbed NH3 molecules.

8.
Angew Chem Int Ed Engl ; 63(16): e202317347, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294119

RESUMEN

The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh1(CO)2 gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.

10.
Faraday Discuss ; 249(0): 84-97, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37791454

RESUMEN

Natural minerals contain ions that become hydrated when they come into contact with water in vapor and liquid forms. Muscovite mica - a common phyllosilicate with perfect cleavage planes - is an ideal system to investigate the details of ion hydration. The cleaved mica surface is decorated by an array of K+ ions that can be easily exchanged with other ions or protons when immersed in an aqueous solution. Despite the vast interest in the atomic-scale hydration processes of these K+ ions, experimental data under controlled conditions have remained elusive. Here, atomically resolved non-contact atomic force microscopy (nc-AFM) is combined with X-ray photoelectron spectroscopy (XPS) to investigate the cation hydration upon dosing water vapor at 100 K in ultra-high vacuum (UHV). The cleaved surface is further exposed to ultra-clean liquid water at room temperature, which promotes ion mobility and partial ion-to-proton substitution. The results offer the first direct experimental views of the interaction of water with muscovite mica under UHV. The findings are in line with previous theoretical predictions.

11.
J Phys Chem Lett ; 15(1): 15-22, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38156776

RESUMEN

Microcline feldspar (KAlSi3O8) is a common mineral with important roles in Earth's ecological balance. It participates in carbon, potassium, and water cycles, contributing to CO2 sequestration, soil formation, and atmospheric ice nucleation. To understand the fundamentals of these processes, it is essential to establish microcline's surface atomic structure and its interaction with the omnipresent water molecules. This work presents atomic-scale results on microcline's lowest-energy surface and its interaction with water, combining ultrahigh vacuum investigations by noncontact atomic force microscopy and X-ray photoelectron spectroscopy with density functional theory calculations. An ordered array of hydroxyls bonded to silicon or aluminum readily forms on the cleaved surface at room temperature. The distinct proton affinities of these hydroxyls influence the arrangement and orientation of the first water molecules binding to the surface, holding potential implications for the subsequent condensation of water.

12.
Nanoscale Adv ; 5(24): 7009-7017, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059015

RESUMEN

Atomically resolved scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are used to gain atomic-scale insights into the heteroepitaxy of lanthanum-strontium manganite (LSMO, La1-xSrxMnO3-δ, x ≈ 0.2) on SrTiO3(110). LSMO is a perovskite oxide characterized by several composition-dependent surface reconstructions. The flexibility of the surface allows it to incorporate nonstoichiometries during growth, which causes the structure of the surface to evolve accordingly. This happens up to a critical point, where phase separation occurs, clusters rich in the excess cations form at the surface, and films show a rough morphology. To limit the nonstoichiometry introduced by non-optimal growth conditions, it proves useful to monitor the changes in surface atomic structures as a function of the PLD parameters and tune the latter accordingly.

13.
ACS Appl Mater Interfaces ; 15(38): 45367-45377, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37704018

RESUMEN

In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

14.
J Phys Chem C Nanomater Interfaces ; 127(37): 18378-18388, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37752903

RESUMEN

The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4 adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4 binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × âˆš2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4 adsorption is found to be close to 4 molecules per (√2 × âˆš2)R45° unit cell.

15.
ACS Meas Sci Au ; 3(3): 236, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360036

RESUMEN

[This corrects the article DOI: 10.1021/acsmeasuresciau.1c00054.].

16.
J Phys Chem Lett ; 14(13): 3258-3265, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36976170

RESUMEN

The (111) facet of magnetite (Fe3O4) has been studied extensively by experimental and theoretical methods, but controversy remains regarding the structure of its low-energy surface terminations. Using density functional theory (DFT) computations, we demonstrate three reconstructions that are more favorable than the accepted Feoct2 termination under reducing conditions. All three structures change the coordination of iron in the kagome Feoct1 layer to be tetrahedral. With atomically resolved microscopy techniques, we show that the termination that coexists with the Fetet1 termination consists of tetrahedral iron capped by 3-fold coordinated oxygen atoms. This structure explains the inert nature of the reduced patches.

17.
ACS Phys Chem Au ; 3(1): 44-62, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36718262

RESUMEN

Temperature-programmed desorption (TPD) experiments in surface science are usually analyzed using the Polanyi-Wigner equation and/or transition-state theory. These methods are far from straightforward, and the determination of the pre-exponential factor is often problematic. We present a different method based on equilibrium thermodynamics, which builds on an approach previously used for TPD by Kreuzer et al. (Surf. Sci. 1988). Equations for the desorption rate are presented for three different types of surface-adsorbate interactions: (i) a 2D ideal hard-sphere gas with a negligible diffusion barrier, (ii) an ideal lattice gas, that is, fixed adsorption sites without interaction between the adsorbates, and (iii) a lattice gas with a distribution of (site-dependent) adsorption energies. We show that the coverage dependence of the sticking coefficient for adsorption at the desorption temperature determines whether the desorption process can be described by first- or second-order kinetics. The sticking coefficient at the desorption temperature must also be known for a quantitative determination of the adsorption energy, but it has a rather weak influence (like the pre-exponential factor in a traditional TPD analysis). Quantitative analysis is also influenced by the vibrational contributions to the energy and entropy. For the case of a single adsorption energy, we provide equations to directly convert peak temperatures into adsorption energies. These equations also provide an approximation of the desorption energy in cases that cannot be described by a fixed pre-exponential factor. For the case of a distribution of adsorption energies, the desorption spectra cannot be considered a superposition of desorption spectra corresponding to the different energies. Nevertheless, we present a method to extract the distribution of adsorption energies from TPD spectra, and we rationalize the energy resolution of TPD experiments. The analytical results are complemented by a program for simulation and analysis of TPD data.

18.
Nat Commun ; 14(1): 208, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639388

RESUMEN

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

19.
ACS Nano ; 16(12): 21163-21173, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36449748

RESUMEN

Clean oxide surfaces are generally hydrophilic. Water molecules anchor at undercoordinated surface metal atoms that act as Lewis acid sites, and they are stabilized by H bonds to undercoordinated surface oxygens. The large unit cell of In2O3(111) provides surface atoms in various configurations, which leads to chemical heterogeneity and a local deviation from this general rule. Experiments (TPD, XPS, nc-AFM) agree quantitatively with DFT calculations and show a series of distinct phases. The first three water molecules dissociate at one specific area of the unit cell and desorb above room temperature. The next three adsorb as molecules in the adjacent region. Three more water molecules rearrange this structure and an additional nine pile up above the OH groups. Despite offering undercoordinated In and O sites, the rest of the unit cell is unfavorable for adsorption and remains water-free. The first water layer thus shows ordering into nanoscopic 3D water clusters separated by hydrophobic pockets.

20.
Sci Adv ; 8(33): eabq1433, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984882

RESUMEN

Polarizable materials attract attention in catalysis because they have a free parameter for tuning chemical reactivity. Their surfaces entangle the dielectric polarization with surface polarity, excess charge, and orbital hybridization. How this affects individual adsorbed molecules is shown for the incipient ferroelectric perovskite KTaO3. This intrinsically polar material cleaves along (001) into KO- and TaO2-terminated surface domains. At TaO2 terraces, the polarity-compensating excess electrons form a two-dimensional electron gas and can also localize by coupling to ferroelectric distortions. TaO2 terraces host two distinct types of CO molecules, adsorbed at equivalent lattice sites but charged differently as seen in atomic force microscopy/scanning tunneling microscopy. Temperature-programmed desorption shows substantially stronger binding of the charged CO; in density functional theory calculations, the excess charge favors a bipolaronic configuration coupled to the CO. These results pinpoint how adsorption states couple to ferroelectric polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA