Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cell Death Dis ; 13(9): 820, 2022 09 24.
Article En | MEDLINE | ID: mdl-36153321

Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.


Bone Morphogenetic Protein 6 , Cell Adhesion Molecules, Neuronal , Osteogenesis , Osteosarcoma , Transcription Factors , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 6/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation , Cell Survival , Cells, Cultured , Culture Media, Conditioned/metabolism , Humans , Ligases/metabolism , Nuclear Proteins/metabolism , Osteosarcoma/metabolism , Transcription Factors/metabolism , Ubiquitins/metabolism
2.
JCI Insight ; 6(13)2021 07 08.
Article En | MEDLINE | ID: mdl-34236045

The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer.


Adenocarcinoma of Lung , Carcinogenesis , Lung Neoplasms , Proto-Oncogene Proteins c-jun/metabolism , ras Proteins/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Genes, jun/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MAP Kinase Kinase 7/genetics , MAP Kinase Kinase 7/metabolism , MAP Kinase Signaling System , Mice , Phosphorylation , Proto-Oncogene Proteins c-jun/genetics , Transcription Factor AP-1/metabolism
3.
Nat Cell Biol ; 21(11): 1413-1424, 2019 11.
Article En | MEDLINE | ID: mdl-31685988

Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC-eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours.


Colorectal Neoplasms/genetics , Eukaryotic Initiation Factor-2/genetics , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/antagonists & inhibitors , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Feedback, Physiological , Female , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Biosynthesis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Survival Analysis , Xenograft Model Antitumor Assays
4.
Biochem Biophys Res Commun ; 407(4): 735-40, 2011 Apr 22.
Article En | MEDLINE | ID: mdl-21439937

In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis or changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the mechanisms of c-Jun and JNK transport to the nucleus and its regulation will improve our understanding of their role in biological and pathophysiological processes.


Cell Nucleus/metabolism , MAP Kinase Kinase 4/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Antigens, Nuclear/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Ku Autoantigen , MAP Kinase Kinase 4/genetics , Phosphorylation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-jun/genetics , beta Karyopherins/metabolism
...