Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666833

RESUMEN

Dental pulp infections are common buccal diseases. When this happens, endodontic treatments are needed to disinfect and prepare the root canal for subsequent procedures. However, the lack of suitable in vitro models representing the anatomy of an immature root canal hinders research on regenerative events crucial in endodontics, such as regenerative procedures. This study aimed to develop a 3D microphysiological system (MPS) to mimic an immature root canal and assess the cytotoxicity of various irrigating solutions on stem cells. Utilizing the Dental Stem Cells SV40 (DSCS) cell line derived from human apical papilla stem cells, we analyzed the effects of different irrigants, including etidronic acid. The results indicated that irrigating solutions diminished cell viability in 2D cultures and influenced cell adhesion within the microphysiological device. Notably, in our 3D studies in the MPS, 17% EDTA and 9% 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) irrigating solutions demonstrated superior outcomes in terms of DSCS viability and adherence compared to the control. This study highlights the utility of the developed MPS for translational studies in root canal treatments and suggests comparable efficacy between 9% HEBP and 17% EDTA irrigating solutions, offering potential alternatives for clinical applications.

2.
Respir Res ; 25(1): 48, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243237

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS: We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS: The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS: The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Trampas Extracelulares , Humanos , Estudios Longitudinales , COVID-19/patología , Interleucina-8 , Neutrófilos/patología , Biomarcadores , ADN , Factor Estimulante de Colonias de Granulocitos
4.
Nat Commun ; 14(1): 6681, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865647

RESUMEN

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.


Asunto(s)
Infecciones por VIH , Neoplasias de Cabeza y Cuello , Virus , Humanos , VIH , Células Asesinas Naturales , Inmunoterapia/métodos
5.
Commun Biol ; 6(1): 925, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689746

RESUMEN

Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.


Asunto(s)
Microfluídica , Neoplasias , Humanos , Citocinas , Difusión , Exobiología , Microambiente Tumoral
6.
Mol Ther ; 31(8): 2507-2523, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143324

RESUMEN

Age-related and chemotherapy-induced bone loss depends on cellular senescence and the cell secretory phenotype. However, the factors secreted in the senescent microenvironment that contribute to bone loss remain elusive. Here, we report a central role for the inflammatory alternative complement system in skeletal bone loss. Through transcriptomic analysis of bone samples, we identified complement factor D, a rate-limiting factor of the alternative pathway of complement, which is among the most responsive factors to chemotherapy or estrogen deficiency. We show that osteoblasts and osteocytes are major inducers of complement activation, while monocytes and osteoclasts are their primary targets. Genetic deletion of C5ar1, the receptor of the anaphylatoxin C5a, or treatment with a C5AR1 inhibitor reduced monocyte chemotaxis and osteoclast differentiation. Moreover, genetic deficiency or inhibition of C5AR1 partially prevented bone loss and osteoclastogenesis upon chemotherapy or ovariectomy. Altogether, these lines of evidence support the idea that inhibition of alternative complement pathways may have some therapeutic benefit in osteopenic disorders.


Asunto(s)
Osteoclastos , Osteogénesis , Femenino , Animales , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoblastos/metabolismo , Monocitos/metabolismo , Complemento C5a/genética , Complemento C5a/metabolismo
7.
Respir Res ; 24(1): 125, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147677

RESUMEN

BACKGROUND: Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients. METHODS: We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA). RESULTS: TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission. CONCLUSIONS: The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , Interleucina-6 , Estudios Longitudinales , Hospitalización , Lactato Deshidrogenasas , Biomarcadores
8.
Sci Rep ; 13(1): 4211, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918615

RESUMEN

The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.


Asunto(s)
Huesos , Glucuronidasa , Proteínas Klotho , Animales , Ratones , Huesos/metabolismo , Glucuronidasa/genética , Glucuronidasa/metabolismo , Riñón/metabolismo , Ratones Noqueados , Minerales/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Klotho/metabolismo
9.
Cell Death Dis ; 14(1): 17, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635269

RESUMEN

Bone remodeling is a continuous process between bone-forming osteoblasts and bone-resorbing osteoclasts, with any imbalance resulting in metabolic bone disease, including osteopenia. The HERC1 gene encodes an E3 ubiquitin ligase that affects cellular processes by regulating the ubiquitination of target proteins, such as C-RAF. Of interest, an association exists between biallelic pathogenic sequence variants in the HERC1 gene and the neurodevelopmental disorder MDFPMR syndrome (macrocephaly, dysmorphic facies, and psychomotor retardation). Most pathogenic variants cause loss of HERC1 function, and the affected individuals present with features related to altered bone homeostasis. Herc1-knockout mice offer an excellent model in which to study the role of HERC1 in bone remodeling and to understand its role in disease. In this study, we show that HERC1 regulates osteoblastogenesis and osteoclastogenesis, proving that its depletion increases gene expression of osteoblastic makers during the osteogenic differentiation of mesenchymal stem cells. During this process, HERC1 deficiency increases the levels of C-RAF and of phosphorylated ERK and p38. The Herc1-knockout adult mice developed imbalanced bone homeostasis that presented as osteopenia in both sexes of the adult mice. By contrast, only young female knockout mice had osteopenia and increased number of osteoclasts, with the changes associated with reductions in testosterone and dihydrotestosterone levels. Finally, osteocytes isolated from knockout mice showed a higher expression of osteocytic genes and an increase in the Rankl/Opg ratio, indicating a relevant cell-autonomous role of HERC1 when regulating the transcriptional program of bone formation. Overall, these findings present HERC1 as a modulator of bone homeostasis and highlight potential therapeutic targets for individuals affected by pathological HERC1 variants.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Masculino , Femenino , Animales , Ratones , Osteogénesis/genética , Osteoclastos/metabolismo , Remodelación Ósea/genética , Osteoblastos/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Diferenciación Celular/genética , Ratones Noqueados , Ligando RANK/metabolismo , Resorción Ósea/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Int Endod J ; 56(4): 502-513, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36585930

RESUMEN

AIM: To establish and fully characterize a new cell line from human stem cells of the apical papilla (SCAPs) through immortalization with an SV40 large T antigen. METHODOLOGY: Human SCAPs were isolated and transfected with an SV40 large T antigen and treated with puromycin to select the infected population. Expression of human mesenchymal surface markers CD73, CD90 and CD105 was assessed in the new cell line named Dental Stem Cells SV40 (DSCS) by flow cytometry at early and late passages. Cell contact inhibition and proliferation were also analysed. To evaluate trilineage differentiation, quantitative polymerase chain reaction and histological staining were performed. RESULTS: DSCS cell flow cytometry confirmed the expression of mesenchymal surface markers even in late passages [100% positive for CD73 and CD90 and 98.9% for CD105 at passage (P) 25]. Fewer than 0.5% were positive for haematopoietic cell markers (CD45 and CD34). DSCS cells also showed increased proliferation when compared to the primary culture after 48 h, with a doubling time of 23.46 h for DSCS cells and 40.31 h for SCAPs, and retained the capacity to grow for >45 passages (150 population doubling) and their spindle-shaped morphology. Trilineage differentiation potential was confirmed through histochemical staining and gene expression of the chondrogenic markers SOX9 and COL2A1, adipogenic markers CEBPA and LPL, and osteogenic markers COL1A1 and ALPL. CONCLUSIONS: The new cell line derived from human SCAPs has multipotency, retains its morphology and expression of mesenchymal surface markers and shows higher proliferative capacity even at late passages (P45). DSCS cells can be used for in vitro study of root development and to achieve a better understanding of the regenerative mechanisms.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre/fisiología , Diferenciación Celular/fisiología , Línea Celular , Adipogénesis/genética , Proliferación Celular , Células Cultivadas , Papila Dental , Osteogénesis/genética
11.
Lab Chip ; 22(19): 3618-3636, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36047330

RESUMEN

Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional in vitro and in vivo platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic in vitro models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.


Asunto(s)
Microfluídica , Neovascularización Patológica , Biología , Comunicación Celular , Descubrimiento de Drogas , Humanos , Microfluídica/métodos
12.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163828

RESUMEN

Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Osteoblastos/citología , Monoéster Fosfórico Hidrolasas/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/genética , Células HCT116 , Células HeLa , Humanos , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , Neoplasias/metabolismo , Osteoblastos/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas
13.
Cancers (Basel) ; 14(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159026

RESUMEN

Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.

14.
Polymers (Basel) ; 13(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34883653

RESUMEN

In oil-immersed power transformers, the insulation system is constituted of a dielectric oil-solid combination. The insulation oil generally used is mineral oil; however, this fluid has started to be substituted by natural and synthetic esters due to their higher biodegradability and flash point. The introduction of a new fluid in the insulation system of power transformers requires kinetic models that can estimate the degradation rate of insulation solids. The aim of this work was to go further in quantifying through different kinetic models the deterioration suffered by a commercial cellulose board (PSP 3055), which is one of the solid materials used in the insulation system of oil-filled transformers. The aging study was extended to cellulose board specimens immersed in two different oils (mineral and synthetic ester). It was obtained that there is a lower degradation when synthetic ester is used in the insulation system. Additionally, it can be concluded that the use of mechanical properties to quantify the degradation of the cellulose board through kinetic models provides information about the different behavior shown by PSP 3055 when different fiber direction angles are considered.

15.
Mikrochim Acta ; 188(11): 398, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34716815

RESUMEN

A simple carbon nanodot-based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , MicroARNs/sangre , Puntos Cuánticos/química , Técnicas Biosensibles/instrumentación , Carbono/química , Complejos de Coordinación/química , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Insuficiencia Cardíaca/sangre , Humanos , Ácidos Nucleicos Inmovilizados/genética , Límite de Detección , Mediciones Luminiscentes/instrumentación , Masculino , MicroARNs/genética , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Compuestos de Rutenio/química
16.
Redox Biol ; 40: 101845, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373776

RESUMEN

Osteocytes, the most abundant bone cell type, are derived from osteoblasts through a process in which they are embedded in an osteoid. We previously showed that nutrient restriction promotes the osteocyte transcriptional program and is associated with increased mitochondrial biogenesis. Here, we show that increased mitochondrial biogenesis increase reactive oxygen species (ROS) levels and consequently, NRF2 activity during osteocytogenesis. NRF2 activity promotes osteocyte-specific expression of Dmp1, Mepe, and Sost in IDG-SW3 cells, primary osteocytes, and osteoblasts, and in murine models with Nfe2l2 deficiency in osteocytes or osteoblasts. Moreover, ablation of Nfe2l2 in osteocytes or osteoblasts generates osteopenia and increases osteoclast numbers with marked sexual dimorphism. Finally, treatment with dimethyl fumarate prevented the deleterious effects of ovariectomy in trabecular bone masses of mice and restored osteocytic gene expression. Altogether, we uncovered the role of NRF2 activity in osteocytes during the regulation of osteocyte gene expression and maintenance of bone homeostasis.


Asunto(s)
Huesos/fisiología , Factor 2 Relacionado con NF-E2 , Osteocitos , Animales , Línea Celular , Expresión Génica , Homeostasis , Ratones , Factor 2 Relacionado con NF-E2/genética
17.
Diagn Cytopathol ; 49(3): 412-417, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33252841

RESUMEN

BACKGROUND: Atypia of undetermined significance (AUS) or follicular lesion of undetermined significance (FLUS) is the most controversial category of the Bethesda System. The present study was conducted to compare the histological findings in a series of thyroid nodules diagnosed with AUS/FLUS after single or repeat fine needle aspiration (FNA) cytology. METHODS: Retrospective analysis of our institution's series of 514 patients with an initial diagnosis of AUS/FLUS between 11/2011 and 02/2020. RESULTS: Of 4887 FNA samples, 11.8% were classified as AUS/FLUS. Of patients with an initial AUS/FLUS diagnosis, 11.5% (59/514) underwent surgery after a single FNA, 55.4% (285/514) had a repeat FNA, and 32.7% (168/514) were either observed or lost to follow-up. Surgical pathology was available in 123 cases (23.9%), and malignancy was confirmed in 32.5% (40/123) cases, with similar rates in the single 32.2% (19/59) and repeat FNA 32.8% (21/64) groups. Repeat FNA reclassified 78.9% of the AUS/FLUS cases to a different category: 57.2% were reclassified as benign, 10.5% as follicular neoplasm, and 5.6% as suspicious for malignancy or malignant. The rates of nonneoplastic benign lesions were 52.5% (31/59) and 31.2% (20/64) in the single and repeat FNA groups, respectively (P = .018). The rates of follicular adenomas were higher when repeat FNA was performed (23/64, 35.9%) compared with a single FNA (9/59; 15.2%) (P = .013). CONCLUSION: In this series, a repeat FNA in cases of AUS/FLUS increased detection of follicular adenomas but not the detection of malignancy. Repeat FNA reduced the rate of benign nonneoplastic lesions by 40% in the surgical samples.


Asunto(s)
Células Epiteliales Tiroideas/patología , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/patología , Biopsia con Aguja Fina/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
18.
Cells ; 8(11)2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683698

RESUMEN

Activin A receptor type I (ACVR1) encodes for a bone morphogenetic protein type I receptor of the TGFß receptor superfamily. It is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation. Moreover, ACVR1 has been extensively studied for its causal role in fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterised by progressive heterotopic ossification. ACVR1 is linked to different pathologies, including cardiac malformations and alterations in the reproductive system. More recently, ACVR1 has been experimentally validated as a cancer driver gene in diffuse intrinsic pontine glioma (DIPG), a malignant childhood brainstem glioma, and its function is being studied in other cancer types. Here, we review ACVR1 receptor function and signalling in physiological and pathological processes and its regulation according to cell type and mutational status. Learning from different functions and alterations linked to ACVR1 is a key step in the development of interdisciplinary research towards the identification of novel treatments for these pathologies.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Neoplasias Encefálicas/patología , Receptores de Activinas Tipo I/genética , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patología , Genitales/metabolismo , Genitales/patología , Humanos , Miositis Osificante/genética , Miositis Osificante/metabolismo , Miositis Osificante/patología , Osificación Heterotópica , Polimorfismo de Nucleótido Simple , Transducción de Señal
19.
Biomolecules ; 9(10)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561501

RESUMEN

The integration of cell extrinsic and intrinsic signals is required to maintain appropriate cell physiology and homeostasis. Bone morphogenetic proteins (BMPs) are cytokines that belong to the transforming growth factor-ß (TGF-ß) superfamily, which play a key role in embryogenesis, organogenesis and regulation of whole-body homeostasis. BMPs interact with membrane receptors that transduce information to the nucleus through SMAD-dependent and independent pathways, including PI3K-AKT and MAPKs. Reactive oxygen species (ROS) are intracellular molecules derived from the partial reduction of oxygen. ROS are highly reactive and govern cellular processes by their capacity to regulate signaling pathways (e.g., NF-κB, MAPKs, KEAP1-NRF2 and PI3K-AKT). Emerging evidence indicates that BMPs and ROS interplay in a number of ways. BMPs stimulate ROS production by inducing NOX expression, while ROS regulate the expression of several BMPs. Moreover, BMPs and ROS influence common signaling pathways, including PI3K/AKT and MAPK. Additionally, dysregulation of BMPs and ROS occurs in several pathologies, including vascular and musculoskeletal diseases, obesity, diabetes and kidney injury. Here, we review the current knowledge on the integration between BMP and ROS signals and its potential applications in the development of new therapeutic strategies.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Humanos , Factor de Crecimiento Transformador beta/metabolismo
20.
EMBO Mol Med ; 11(9): e10567, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31373426

RESUMEN

Heterotopic ossification (HO) is the pathological formation of ectopic endochondral bone within soft tissues. HO occurs following mechanical trauma, burns, or congenitally in patients suffering from fibrodysplasia ossificans progressiva (FOP). FOP patients carry a conserved mutation in ACVR1 that becomes neomorphic for activin A responses. Here, we demonstrate the efficacy of BYL719, a PI3Kα inhibitor, in preventing HO in mice. We found that PI3Kα inhibitors reduce SMAD, AKT, and mTOR/S6K activities. Inhibition of PI3Kα also impairs skeletogenic responsiveness to BMPs and the acquired response to activin A of the Acvr1R206H allele. Further, the efficacy of PI3Kα inhibitors was evaluated in transgenic mice expressing Acvr1Q207D . Mice treated daily or intermittently with BYL719 did not show ectopic bone or cartilage formation. Furthermore, the intermittent treatment with BYL719 was not associated with any substantial side effects. Therefore, this work provides evidence supporting PI3Kα inhibition as a therapeutic strategy for HO.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Osificación Heterotópica/enzimología , Osificación Heterotópica/prevención & control , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Activinas/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Ratones , Osificación Heterotópica/genética , Tiazoles/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA