Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8020, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049428

RESUMEN

BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-ß superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.


Asunto(s)
Glicoproteínas , Péptido Hidrolasas , Humanos , Glicoproteínas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Morfogénesis , Péptidos y Proteínas de Señalización Intercelular
2.
J Fungi (Basel) ; 9(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108947

RESUMEN

Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.

3.
Front Plant Sci ; 12: 668937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220891

RESUMEN

Fungi are the most prevalent plant pathogens, causing annually important damages. To infect and colonize their hosts, they secrete effectors including hydrolytic enzymes able to kill and macerate plant tissues. These secreted proteins are transported from the Endoplasmic Reticulum and the Golgi apparatus to the extracellular space through intracellular vesicles. In pathogenic fungi, intracellular vesicles were described but their biogenesis and their role in virulence remain unclear. In this study, we report the essential role of clathrin heavy chain (CHC) in the pathogenicity of Botrytis cinerea, the agent of gray mold disease. To investigate the importance of this protein involved in coat vesicles formation in eukaryotic cells, a T-DNA insertional mutant reduced in the expression of the CHC-encoding gene, and a mutant expressing a dominant-negative form of CHC were studied. Both mutants were strongly affected in pathogenicity. Characterization of the mutants revealed altered infection cushions and an important defect in protein secretion. This study demonstrates the essential role of clathrin in the infectious process of a plant pathogenic fungus and more particularly its role in virulence factors delivery.

4.
Theranostics ; 11(13): 6173-6192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995652

RESUMEN

Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/- knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.


Asunto(s)
Catepsina D/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteonectina/metabolismo , Fragmentos de Péptidos/farmacología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catepsina D/deficiencia , Catepsina D/genética , Adhesión Celular , Femenino , Fibroblastos , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Mamarias Experimentales/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Peso Molecular , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Osteonectina/genética , Fragmentos de Péptidos/metabolismo , Dominios Proteicos , Proteolisis , Especificidad por Sustrato , Migración Transendotelial y Transepitelial , Neoplasias de la Mama Triple Negativas/enzimología
5.
Front Microbiol ; 10: 2829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866989

RESUMEN

The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted proteins in the infection process. In the twelve non-pathogenic mutants, the differentiation of infection cushions was also impaired, suggesting a link between the penetration structures and the secretion of proteins involved in the virulence of the pathogen.

6.
Environ Microbiol Rep ; 10(5): 555-568, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30066486

RESUMEN

The phytopathogenic fungus Botrytis cinerea is able to infect a wide variety of plants and plant tissues with differing chemical compositions. During its interaction with the host, this pathogen modulates its ambient pH by secreting acids or ammonia. In this work, we examined the Pal/Pac pathway, the fungal ambient pH-responsive signalling circuit, and investigated the role of the PacC transcription factor. Characterization of the BcpacC deletion mutant revealed an alteration of both fungal growth and virulence depending on the pH of the culture medium or of the host tissue. The pathogenicity of the mutant was altered on plants exhibiting a neutral pH and not on plants with acidic tissues. The capacity of the mutant to acidify its environment and, more particularly, to produce oxalic acid was affected, as was production of reactive oxygen species. Finally, proteomic profiling of the mutant secretome revealed significant changes in plant cell wall polysaccharides proteins and lipid degradation and oxidoreduction, highlighting the importance of BcPacC in the necrotrophic lifestyle of B. cinerea.


Asunto(s)
Botrytis/fisiología , Botrytis/patogenicidad , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Factores de Virulencia/metabolismo , Virulencia/genética , Botrytis/crecimiento & desarrollo , Botrytis/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Micelio/crecimiento & desarrollo , Ácido Oxálico/metabolismo , Estrés Oxidativo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factores de Virulencia/genética
7.
BMC Genomics ; 18(1): 635, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821226

RESUMEN

BACKGROUND: Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. RESULTS: We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. CONCLUSIONS: The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control.


Asunto(s)
Aedes/metabolismo , Arbovirus/fisiología , Proteómica , Wolbachia/fisiología , Aedes/microbiología , Aedes/virología , Animales , Línea Celular
8.
Front Plant Sci ; 6: 859, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528317

RESUMEN

Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873.

9.
New Phytol ; 208(4): 1169-87, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26171947

RESUMEN

Extracellular proteins play crucial roles in the interaction between mycorrhizal fungi and their environment. Computational prediction and experimental detection allowed identification of 869 proteins constituting the exoproteome of Hebeloma cylindrosporum. Small secreted proteins (SSPs) and carbohydrate-active enzymes (CAZymes) were the two major classes of extracellular proteins. Twenty-eight per cent of the SSPs were secreted by free-living mycelia and five of the 10 most abundant extracellular proteins were SSPs. By contrast, 63-75% of enzymes involved in nutrient acquisition were secreted. A total of 150 extracellular protein-coding genes were differentially expressed between mycorrhizas and free-living mycelia. SSPs were the most affected. External environmental conditions also affected expression of 199 exoproteome genes in mycorrhizas. SSPs displayed different patterns of regulation in response to presence of a host plant or other environmental signals. Several of the genes most overexpressed in the presence of organic matter encoded oxidoreductases. Hebeloma cylindrosporum has not fully lost its ancestral saprotrophic capacities but rather adapted them not to harm its hosts and to use soil organic nitrogen. The complex and divergent patterns of regulation of SSPs in response to a symbiotic partner and/or organic matter suggest various roles in the biology of mycorrhizal fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Hebeloma/metabolismo , Micorrizas/metabolismo , Proteoma/metabolismo , Simbiosis , Proteínas Fúngicas/genética , Genómica , Hebeloma/genética , Proteómica , Transcriptoma
10.
Proteomics ; 13(3-4): 597-608, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23349114

RESUMEN

Microorganisms, although being very diverse because they comprise prokaryotic organisms such as bacteria or eukaryotic organisms such as fungi, all share an essential exodigester function. The consequence is their essential need to have a secretome adapted to their environment. The selection pressure exerted by environmental constraints led to the emergence of species with varying complexity in terms of composition of their secretomes. This review on fungal secretomes highlights the extraordinary variability among these organisms, even within the same species, and hence the absolute necessity to fully characterize all their components in the aims of understanding the fundamental mechanisms responsible for secretome plasticity and developing applications notably toward a better control of diseases caused by these pathogens.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/fisiología , Proteoma/metabolismo , Animales , Proteínas Fúngicas/fisiología , Hongos/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteoma/fisiología , Proteómica , Simbiosis , Virulencia
11.
Metallomics ; 4(8): 835-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22706205

RESUMEN

Although essential in many cellular processes, metals become toxic when they are present in excess and constitute a global environmental hazard. To overcome this stress, fungi have evolved several mechanisms at both intracellular and extracellular levels. In particular, fungi are well known for their ability to secrete a large panel of proteins. However, their role in the adaptation of fungi to metal toxicity has not yet been investigated. To address this question, here, the fungus Botrytis cinerea was challenged to copper, zinc, nickel or cadmium stress and secreted proteins were collected and separated by 2D-PAGE. One hundred and sixteen spots whose volume varied under at least one tested condition were observed on 2D gels. Densitometric analyses revealed that the secretome signature in response to cadmium was significantly different from those obtained with the other metals. Fifty-five of these 116 spots were associated with unique proteins and functional classification revealed that the production of oxidoreductases and cell-wall degrading enzymes was modified in response to metals. Promoter analysis disclosed that PacC/Rim101 sites were statistically over-represented in the upstream sequences of the 31 genes corresponding to the varying unique spots suggesting a possible link between pH regulation and metal response in B. cinerea.


Asunto(s)
Botrytis/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Contaminantes Ambientales/metabolismo , Proteínas Fúngicas/metabolismo , Níquel/metabolismo , Zinc/metabolismo , Botrytis/enzimología , Botrytis/genética , Cadmio/toxicidad , Cobre/toxicidad , Electroforesis en Gel Bidimensional , Contaminantes Ambientales/toxicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Níquel/toxicidad , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteómica , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...