Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nature ; 607(7920): 823-830, 2022 07.
Article En | MEDLINE | ID: mdl-35859174

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Carbon Dioxide , Cell Membrane , Hydrogen , Hydrogenase , Nanowires , Carbon Dioxide/metabolism , Cell Membrane/enzymology , Cryoelectron Microscopy , Enzyme Stability , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Hydrogenase/metabolism , Hydrogenase/ultrastructure , Mutation , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermoanaerobacter/cytology , Thermoanaerobacter/enzymology
2.
Environ Microbiol ; 23(8): 4505-4517, 2021 08.
Article En | MEDLINE | ID: mdl-34125457

Methanol is the simplest of all alcohols, is universally distributed in anoxic sediments as a result of plant material decomposition and is constantly attracting attention as an interesting substrate for anaerobes like acetogens that can convert bio-renewable methanol into value-added chemicals. A major drawback in the development of environmentally friendly but economically attractive biotechnological processes is the present lack of information on biochemistry and bioenergetics during methanol conversion in these bacteria. The mesophilic acetogen Eubacterium callanderi KIST612 is naturally able to consume methanol and produce acetate as well as butyrate. To grasp the full potential of methanol-based production of chemicals, we analysed the genes and enzymes involved in methanol conversion to acetate and identified the redox carriers involved. We will display a complete model for methanol-derived acetogenesis and butyrogenesis in Eubacterium callanderi KIST612, tracing the electron transfer routes and shed light on the bioenergetics during the process.


Eubacterium , Methanol , Butyrates , Eubacterium/genetics , Oxidation-Reduction
3.
Front Microbiol ; 11: 59, 2020.
Article En | MEDLINE | ID: mdl-32082286

The hydrogen-dependent carbon dioxide reductase is a soluble enzyme complex that directly utilizes hydrogen (H2) for the reduction of carbon dioxide (CO2) to formate in the first step of the acetyl-coenzyme A- or Wood-Ljungdahl pathway (WLP). HDCR consists of 2 catalytic subunits, a hydrogenase and a formate dehydrogenase (FDH) and two small subunits carrying iron-sulfur clusters. The enzyme complex has been purified and characterized from two acetogenic bacteria, from the mesophile Acetobacterium woodii and, recently, from the thermophile Thermoanaerobacter kivui. Physiological studies toward the importance of the HDCR for growth and formate metabolism in acetogens have not been carried out yet, due to the lack of genetic tools. Here, we deleted the genes encoding HDCR in T. kivui taking advantage of the recently developed genetic system. As expected, the deletion mutant (strain TKV_MB013) did not grow with formate as single substrate or under autotrophic conditions with H2 + CO2. Surprisingly, the strain did also not grow on any other substrate (sugars, mannitol or pyruvate), except for when formate was added. Concentrated cell suspensions quickly consumed formate in the presence of glucose only. In conclusion, HDCR provides formate which was essential for growth of the T. kivui mutant. Alternatively, extracellularly added formate served as terminal electron acceptor in addition to CO2, complementing the growth deficiency. The results show a tight coupling of multi-carbon substrate oxidation to the WLP. The metabolism in the mutant can be viewed as a coupled formate + CO2 respiration, which may be an ancient metabolic trait.

4.
Microb Cell Fact ; 18(1): 216, 2019 Dec 23.
Article En | MEDLINE | ID: mdl-31870378

This study reveals that it is possible to secrete truncated versions of outer membrane cytochromes into the culture supernatant and that these proteins can provide a basis for the export of heterologously produced proteins. Different soluble and truncated versions of the outer membrane cytochrome MtrF were analyzed for their suitability to be secreted. A protein version with a very short truncation of the N-terminus to remove the recognition sequence for the addition of a lipid anchor is secreted efficiently to the culture supernatant, and moreover this protein could be further truncated by a deletion of 160 amino acid and still is detectable in the supernatant. By coupling a cellulase to this soluble outer membrane cytochrome, the export efficiency was measured by means of relative cellulase activity. We conclude that outer membrane cytochromes of S. oneidensis can be applied as transporters for the export of target proteins into the medium using the type II secretion pathway.


Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Outer Membrane/metabolism , Cytochromes/metabolism , Shewanella/metabolism , Shewanella/chemistry , Solubility
...