Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
New Phytol ; 240(1): 242-257, 2023 10.
Article En | MEDLINE | ID: mdl-37548068

The ascorbate-glutathione (ASC-GSH) cycle is at the heart of redox metabolism, linking the major redox buffers with central metabolism through the processing of reactive oxygen species (ROS) and pyridine nucleotide metabolism. Tomato fruit development is underpinned by changes in redox buffer contents and their associated enzyme capacities, but interactions between them remain unclear. Based on quantitative data obtained for the core redox metabolism, we built an enzyme-based kinetic model to calculate redox metabolite concentrations with their corresponding fluxes and control coefficients. Dynamic and associated regulations of the ASC-GSH cycle throughout the whole fruit development were analysed and pointed to a sequential metabolic control of redox fluxes by ASC synthesis, NAD(P)H and ROS availability depending on the developmental phase. Furthermore, we highlighted that monodehydroascorbate reductase and the availability of reducing power were found to be the main regulators of the redox state of ASC and GSH during fruit growth under optimal conditions. Our kinetic modelling approach indicated that tomato fruit development displayed growth phase-dependent redox metabolism linked with central metabolism via pyridine nucleotides and H2 O2 availability, while providing a new tool to the scientific community to investigate redox metabolism in fruits.


Solanum lycopersicum , Reactive Oxygen Species/metabolism , Fruit , Oxidation-Reduction , Pyridines , Glutathione/metabolism , Ascorbic Acid
2.
Plant J ; 112(4): 1014-1028, 2022 11.
Article En | MEDLINE | ID: mdl-36198049

Ammonium (NH4 + )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4 + provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.


Ammonium Compounds , Solanum lycopersicum , Solanum lycopersicum/metabolism , Ammonium Compounds/metabolism , Vacuoles/metabolism , Plant Leaves/metabolism , Nitrogen/metabolism
3.
Metabolites ; 11(12)2021 Dec 06.
Article En | MEDLINE | ID: mdl-34940606

During its development, the leaf undergoes profound metabolic changes to ensure, among other things, its growth. The subcellular metabolome of tomato leaves was studied at four stages of leaf development, with a particular emphasis on the composition of the vacuole, a major actor of cell growth. For this, leaves were collected at different positions of the plant, corresponding to different developmental stages. Coupling cytology approaches to non-aqueous cell fractionation allowed to estimate the subcellular concentrations of major compounds in the leaves. The results showed major changes in the composition of the vacuole across leaf development. Thus, sucrose underwent a strong allocation, being mostly located in the vacuole at the beginning of development and in the cytosol at maturity. Furthermore, these analyses revealed that the vacuole, rather rich in secondary metabolites and sugars in the growth phases, accumulated organic acids thereafter. This result suggests that the maintenance of the osmolarity of the vacuole of mature leaves would largely involve inorganic molecules.

4.
J Exp Bot ; 72(8): 3185-3199, 2021 04 02.
Article En | MEDLINE | ID: mdl-33578414

Nitrate (NO3-) and ammonium (NH4+) are the main inorganic nitrogen sources available to plants. However, exclusive ammonium nutrition may lead to stress characterized by growth inhibition, generally associated with a profound metabolic reprogramming. In this work, we investigated how metabolism adapts according to leaf position in the vertical axis of tomato (Solanum lycopersicum cv. M82) plants grown with NH4+, NO3-, or NH4NO3 supply. We dissected leaf biomass composition and metabolism through an integrative analysis of metabolites, ions, and enzyme activities. Under ammonium nutrition, carbon and nitrogen metabolism were more perturbed in mature leaves than in young ones, overall suggesting a trade-off between NH4+ accumulation and assimilation to preserve young leaves from ammonium stress. Moreover, NH4+-fed plants exhibited changes in carbon partitioning, accumulating sugars and starch at the expense of organic acids, compared with plants supplied with NO3-. We explain such reallocation by the action of the biochemical pH-stat as a mechanism to compensate the differential proton production that depends on the nitrogen source provided. This work also underlines that the regulation of leaf primary metabolism is dependent on both leaf phenological stage and the nitrogen source provided.


Ammonium Compounds , Solanum lycopersicum , Nitrates , Nitrogen , Plant Leaves
5.
Front Plant Sci ; 9: 421, 2018.
Article En | MEDLINE | ID: mdl-29868039

Anthocyanin biosynthesis is regulated by environmental factors (such as light, temperature, and water availability) and nutrient status (such as carbon, nitrogen, and phosphate nutrition). Previous reports show that low nitrogen availability strongly enhances anthocyanin accumulation in non carbon-limited plant organs or cell suspensions. It has been hypothesized that high carbon-to-nitrogen ratio would lead to an energy excess in plant cells, and that an increase in flavonoid pathway metabolic fluxes would act as an "energy escape valve," helping plant cells to cope with energy and carbon excess. However, this hypothesis has never been tested directly. To this end, we used the grapevine Vitis vinifera L. cultivar Gamay Teinturier (syn. Gamay Freaux or Freaux Tintorier, VIVC #4382) cell suspension line as a model system to study the regulation of anthocyanin accumulation in response to nitrogen supply. The cells were sub-cultured in the presence of either control (25 mM) or low (5 mM) nitrate concentration. Targeted metabolomics and enzyme activity determinations were used to parametrize a constraint-based model describing both the central carbon and nitrogen metabolisms and the flavonoid (phenylpropanoid) pathway connected by the energy (ATP) and reducing power equivalents (NADPH and NADH) cofactors. The flux analysis (2 flux maps generated, for control and low nitrogen in culture medium) clearly showed that in low nitrogen-fed cells all the metabolic fluxes of central metabolism were decreased, whereas fluxes that consume energy and reducing power, were either increased (upper part of glycolysis, shikimate, and flavonoid pathway) or maintained (pentose phosphate pathway). Also, fluxes of flavanone 3ß-hydroxylase, flavonol synthase, and anthocyanidin synthase were strongly increased, advocating for a regulation of the flavonoid pathway by alpha-ketoglutarate levels. These results strongly support the hypothesis of anthocyanin biosynthesis acting as an energy escape valve in plant cells, and they open new possibilities to manipulate flavonoid production in plant cells. They do not, however, support a role of anthocyanins as an effective mechanism for coping with carbon excess in high carbon to nitrogen ratio situations in grape cells. Instead, constraint-based modeling output and biomass analysis indicate that carbon excess is dealt with by vacuolar storage of soluble sugars.

6.
J Exp Bot ; 68(9): 2083-2098, 2017 04 01.
Article En | MEDLINE | ID: mdl-28444347

Fluxes through metabolic pathways reflect the integration of genetic and metabolic regulations. While it is attractive to measure all the mRNAs (transcriptome), all the proteins (proteome), and a large number of the metabolites (metabolome) in a given cellular system, linking and integrating this information remains difficult. Measurement of metabolome-wide fluxes (termed the fluxome) provides an integrated functional output of the cell machinery and a better tool to link functional analyses to plant phenotyping. This review presents and discusses sets of methodologies that have been developed to measure the fluxome. First, the principles of metabolic flux analysis (MFA), its 'short time interval' version Inst-MFA, and of constraints-based methods, such as flux balance analysis and kinetic analysis, are briefly described. The use of these powerful methods for flux characterization at the cellular scale up to the organ (fruits, seeds) and whole-plant level is illustrated. The added value given by fluxomics methods for unravelling how the abiotic environment affects flux, the process, and key metabolic steps are also described. Challenges associated with the development of fluxomics and its integration with 'omics' for thorough plant and organ functional phenotyping are discussed. Taken together, these will ultimately provide crucial clues for identifying appropriate target plant phenotypes for breeding.


Metabolic Flux Analysis/methods , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Plants/metabolism
7.
New Phytol ; 213(4): 1726-1739, 2017 Mar.
Article En | MEDLINE | ID: mdl-27861943

Tomato is a model organism to study the development of fleshy fruit including ripening initiation. Unfortunately, few studies deal with the brief phase of accelerated ripening associated with the respiration climacteric because of practical problems involved in measuring fruit respiration. Because constraint-based modelling allows predicting accurate metabolic fluxes, we investigated the respiration and energy dissipation of fruit pericarp at the breaker stage using a detailed stoichiometric model of the respiratory pathway, including alternative oxidase and uncoupling proteins. Assuming steady-state, a metabolic dataset was transformed into constraints to solve the model on a daily basis throughout tomato fruit development. We detected a peak of CO2 released and an excess of energy dissipated at 40 d post anthesis (DPA) just before the onset of ripening coinciding with the respiration climacteric. We demonstrated the unbalanced carbon allocation with the sharp slowdown of accumulation (for syntheses and storage) and the beginning of the degradation of starch and cell wall polysaccharides. Experiments with fruits harvested from plants cultivated under stress conditions confirmed the concept. We conclude that modelling with an accurate metabolic dataset is an efficient tool to bypass the difficulty of measuring fruit respiration and to elucidate the underlying mechanisms of ripening.


Fruit/cytology , Fruit/physiology , Models, Biological , Solanum lycopersicum/cytology , Solanum lycopersicum/physiology , Adenosine Triphosphate/metabolism , Carbohydrate Metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Cell Respiration , Fruit/growth & development , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Nitrogen/metabolism , Stress, Physiological , Sucrose/metabolism , Thermogenesis , Time Factors
8.
Plant J ; 81(1): 24-39, 2015 Jan.
Article En | MEDLINE | ID: mdl-25279440

Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits.


Metabolic Networks and Pathways , Models, Biological , Solanum lycopersicum/metabolism , Adenosine Triphosphate/metabolism , Biomass , Carbon/metabolism , Energy Metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Glycolysis , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Nitrogen/metabolism , Pentose Phosphate Pathway
9.
Plant Cell ; 26(8): 3224-42, 2014 Aug.
Article En | MEDLINE | ID: mdl-25139005

A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division.


Carbohydrate Metabolism , Models, Biological , Solanum lycopersicum/metabolism , Biological Transport , Carrier Proteins/metabolism , Cell Division , Fruit/enzymology , Fruit/growth & development , Fruit/metabolism , Glucokinase/antagonists & inhibitors , Glucokinase/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/physiology , Kinetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/growth & development , Osmotic Pressure , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Sucrose/metabolism , Vacuoles/metabolism , Vacuoles/physiology , beta-Fructofuranosidase/antagonists & inhibitors , beta-Fructofuranosidase/metabolism
10.
Methods Mol Biol ; 1090: 1-17, 2014.
Article En | MEDLINE | ID: mdl-24222406

This volume compiles a series of chapters that cover the major aspects of plant metabolic flux analysis, such as but not limited to labeling of plant material, acquisition of labeling data, mathematical modeling of metabolic network at the cell, tissue, and plant level. A short revue, including methodological points and applications of flux analysis to plants, is presented in this introductory chapter.


Metabolic Flux Analysis , Plants, Genetically Modified/metabolism , Plants/metabolism , Humans , Metabolic Networks and Pathways , Models, Biological , Plants/genetics , Staining and Labeling
11.
Methods Mol Biol ; 1090: 41-52, 2014.
Article En | MEDLINE | ID: mdl-24222408

Steady state (13)C-MFA is classically used to measure fluxes in complex metabolic networks. However, the modeling of steady state labeling allows the quantification of internal fluxes only and requires the estimation, by other methods, of the external fluxes, corresponding to substrate uptake (carbon input into the network) and to the production rate of compounds that accumulate within plant cells (network output). Additionally, it is not always possible to discriminate between different pathways that lead to the same label distribution. Methods to measure fluxes, based on direct measurements of pool size and on (14)C short-time labeling experiments, are described in this chapter. To illustrate this approach, we focus on the quantification of sucrose and starch turnovers.


Carbohydrate Metabolism , Metabolic Flux Analysis , Solanum lycopersicum/metabolism , Zea mays/metabolism , Carbon Radioisotopes , Culture Techniques , Solanum lycopersicum/cytology , Meristem/cytology , Meristem/metabolism , Staining and Labeling , Starch/isolation & purification , Starch/metabolism , Sucrose/isolation & purification , Sucrose/metabolism , Zea mays/cytology
12.
BMC Syst Biol ; 5: 95, 2011 Jun 20.
Article En | MEDLINE | ID: mdl-21682932

BACKGROUND: (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. RESULTS: Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. CONCLUSION: This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis, by allowing the prediction of changes in internal fluxes before carbon labelling experiments.


Brassica napus/metabolism , Corynebacterium glutamicum/metabolism , Metabolic Networks and Pathways , Amino Acids/biosynthesis , Carbon Isotopes/metabolism , Glucose/metabolism , Minerals/metabolism , Nitrogen/metabolism , Seeds/metabolism
13.
Metab Eng ; 9(5-6): 419-32, 2007.
Article En | MEDLINE | ID: mdl-17869563

In order to understand the role of sucrose synthase (SuSy) in carbon partitioning, metabolic fluxes were analyzed in maize root tips of a double mutant of SuSy genes, sh1 sus1 and the corresponding wild type, W22. [U-(14)C]-glucose pulse labeling experiments permitted the quantification of unidirectional fluxes into sucrose, starch and cell wall polysaccharides. Isotopic steady-state labeling with [1-(13)C]-, [2-(13)C]- or [U-(13)C]-glucose followed by the quantification by (1)H-NMR and (13)C-NMR of enrichments in carbohydrates and amino acids was also performed to determine 29 fluxes through central metabolism using computer-aided modeling. As a consequence of the suppression of SUS1 and SH1 isozymes, maize root tips diameter was significantly decreased and respiratory metabolism reduced by 30%. Our result clearly established that, in maize root tips, starch is produced from ADP-Glc synthesized in the plastid and not in the cytosol by sucrose synthase. Unexpectedly, the flux of cell wall synthesis was increased in the double mutant. This observation indicates that, in maize root tips, SH1 and SUS1 are not specific providers for cellulose biosynthesis.


Glucosyltransferases/metabolism , Models, Biological , Plant Roots/enzymology , Plant Roots/metabolism , Zea mays/anatomy & histology , Carbon Isotopes/metabolism , Cell Compartmentation , Glucose/metabolism , Glucose-1-Phosphate Adenylyltransferase/biosynthesis , Glucosyltransferases/genetics , Isoenzymes/metabolism , Isotope Labeling , Mutation , Nuclear Magnetic Resonance, Biomolecular , Plant Roots/cytology , Plastids/metabolism , Starch/biosynthesis
14.
Phytochemistry ; 68(16-18): 2222-31, 2007.
Article En | MEDLINE | ID: mdl-17559894

Substrate cycles, also called "futile" cycles, are ubiquitous and lead to a net consumption of ATP which, in the normoxic maize root, have been estimated at about 50% of the total ATP produced [Alonso, A.P., Vigeolas, H., Raymond, P., Rolin, D., Dieuaide-Noubhani, M., 2005. A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [(13)C] glucose and [(14)C] glucose. Plant Physiol. 138, 2220-2232]. To evaluate their role we studied the substrate cycles of maize root tips under an oxygen limitation of respiration (3% O(2)). Short-time labeling experiments with [U-(14)C]-Glc were performed to quantify the fluxes through sucrose and starch cycles of synthesis and degradation. Steady-state labeling with [1-(13)C]-Glc followed by (1)H NMR and (13)C NMR analysis of sugars and free alanine was used to quantify fluxes in the central metabolic pathways, including the Glc-P/Glc cycle and the fructose-P/triose-P cycle of glycolysis. Comparison with results previously obtained in normoxia [Alonso et al., as mentioned above] showed that 3% O(2) induced fermentation and reduced respiration, which led to a lesser amount of ATP produced. The rates of Glc consumption, glycolytic flux and all substrate cycles were lower, but the proportion of ATP consumed in the substrate cycles remained unchanged. These findings suggest that substrate cycles are not a luxury but an integral part of the organization of the plant central metabolism.


Cell Hypoxia , Models, Biological , Zea mays/metabolism , Adenosine Triphosphate/metabolism , Carbon Isotopes , Carbon Radioisotopes , Citric Acid Cycle , Glucose/metabolism , Glycolysis , Nuclear Magnetic Resonance, Biomolecular , Plant Roots/metabolism , Substrate Cycling , Zea mays/enzymology
15.
EXS ; 97: 213-43, 2007.
Article En | MEDLINE | ID: mdl-17432270

Isotopic tracers are used to both trace metabolic pathways and quantify fluxes through these pathways. The use of different labeling methods recently led to profound changes in our views of plant metabolism. Examples are taken from primary metabolism, with sugar interconversions, carbon partitioning between glycolysis and the pentose phosphate pathway, or metabolite inputs into the tricarboxylic acid (TCA) cycle, as well as from secondary metabolism with the relative contribution of the plastidial and cytosolic pathways to the biosynthesis of terpenoids. While labeling methods are often distinguished according to the instruments used for label detection, emphasis is put here on labeling duration. Short time labeling is adequate to study limited areas of the metabolic network. Long-term labeling, when designed to obtain metabolic and isotopic steady-state, allows to calculate various fluxes in large areas ofcentral metabolism. After longer labeling periods, large amounts of label accumulate in structural or storage compounds: their detailed study through the retrobiosynthetic method gives access to the biosynthetic pathways of otherwise undetectable precursors. This chapter presents the power and limits of the different methods, and illustrates how they can be associated with each other and with other methods of cell biology, to provide the information needed for a rational approach of metabolic engineering.


Carbon/metabolism , Plants/metabolism , Carbon/analysis , Glutamic Acid/metabolism , Heterotrophic Processes , Metabolic Networks and Pathways , Terpenes/chemistry , Terpenes/metabolism
16.
Plant Physiol ; 138(4): 2220-32, 2005 Aug.
Article En | MEDLINE | ID: mdl-16024683

Substrate (futile) cycling involving carbohydrate turnover has been widely reported in plant tissues, although its extent, mechanisms, and functions are not well known. In this study, two complementary approaches, short and steady-state labeling experiments, were used to analyze glucose metabolism in maize (Zea mays) root tips. Unidirectional rates of synthesis for storage compounds (starch, Suc, and cell wall polysaccharides) were determined by short labeling experiments using [U-14C]glucose and compared with net synthesis fluxes to determine the rate of glucose production from these storage compounds. Steady-state labeling with [1-(13)C]glucose and [U-13C]glucose showed that the redistribution of label between carbon C-1 and C-6 in glucose is close to that in cytosolic hexose-P. These results indicate a high resynthesis flux of glucose from hexose-P that is not accounted for by glucose recycling from storage compounds, thus suggesting the occurrence of a direct glucose-P-to-glucose conversion. An enzyme assay confirmed the presence of substantial glucose-6-phosphatase activity in maize root tips. This new glucose-P-to-glucose cycle was shown to consume around 40% of the ATP generated in the cell, whereas Suc cycling consumes at most 3% to 6% of the ATP produced. The rate of glucose-P cycling differs by a factor of 3 between a maize W22 line and the hybrid maize cv Dea, and is significantly decreased by a carbohydrate starvation pretreatment.


Glucose-6-Phosphatase/metabolism , Glucose/metabolism , Phosphates/metabolism , Zea mays/enzymology , Adenosine Triphosphate/metabolism , Carbon Isotopes , Cell Wall/metabolism , Plant Roots/enzymology , Polysaccharides/biosynthesis , Starch/metabolism
17.
J Exp Bot ; 54(385): 1143-51, 2003 Apr.
Article En | MEDLINE | ID: mdl-12654865

Two-month-old tomato plants were submitted to day/night cycles and to prolonged darkness in order to investigate the physiological and biochemical response to sugar starvation in sink organs. Roots appeared particularly sensitive to the cessation of photosynthesis, as revealed by the reduction of the growth rate and the decline of the carbohydrate and protein content. Therefore, excised tomato roots were used as a model to deepen the characterization of sugar starvation symptoms. In excised roots, the endogenous sugars were rapidly exhausted and significant degradation of protein was observed. Glutamine and asparagine accounted for most of the nitrogen released by protein breakdown. Respiration declined and proliferation- and growth-associated genes were repressed soon after the beginning of the sugar depletion. Among the genes studied, only the gene encoding asparagine synthetase was strongly induced. All the starvation symptoms were reversible when the roots were resupplied with sugar. When the culture conditions deteriorated, the metabolic and molecular changes led to the triggering of apoptosis of the root cells.


Carbohydrates/pharmacology , Plant Roots/drug effects , Solanum lycopersicum/drug effects , Amino Acids/metabolism , Apoptosis/drug effects , Carbohydrate Metabolism , Cell Respiration/drug effects , DNA Fragmentation/drug effects , Darkness , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Nitrogen/metabolism , Oxygen Consumption/drug effects , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Quaternary Ammonium Compounds/metabolism
18.
J Biol Chem ; 277(46): 43948-60, 2002 Nov 15.
Article En | MEDLINE | ID: mdl-12226084

The changes in the intermediary metabolism of plant cells were quantified according to growth conditions at three different stages of the growth cycle of tomato cell suspension. Eighteen fluxes of central metabolism were calculated from (13)C enrichments after near steady-state labeling by a metabolic model similar to that described in Dieuaide-Noubhani et al. (Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A., and Raymond, P. (1995) J. Biol. Chem. 270, 13147-13159), and 10 net fluxes were obtained directly from end-product accumulation rates. The absolute flux values of central metabolic pathways gradually slowed down with the decrease of glucose influx into the cells. However, the relative fluxes of glycolysis, the pentose-P pathway, and the tricarboxylic acid cycle remained unchanged during the culture cycle at 70, 28, and 40% of glucose influx, respectively, and the futile cycle of sucrose remained high at about 6-fold the glucose influx, independently from carbon nutritional conditions. This natural resistance to flux alterations is referred to as metabolic stability. The numerous anabolic pathways, including starch synthesis, hexose accumulation, biosynthesis of wall polysaccharides, and amino and organic acid biosynthesis were comparatively low and variable. The phosphoenolpyruvate carboxylase flux decreased 5-fold in absolute terms and 2-fold in relation to the glucose influx rate during the culture cycle. We conclude that anabolic fluxes constitute the flexible part of plant cell metabolism that can fluctuate in relation to cell demands for growth.


Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Carbon/metabolism , Cell Division , Citric Acid Cycle , Kinetics , Leucine/metabolism , Magnetic Resonance Spectroscopy , Models, Biological , Models, Chemical , Plant Physiological Phenomena , Plastids/metabolism , Polysaccharides/metabolism , Protein Binding , Proteins/metabolism , Sucrose/metabolism , Time Factors
...