Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Microorganisms ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677512

RESUMEN

This work provides the basis for implementing a continuous treatment system using a bacterial consortium for wastewater containing a pesticide mixture of iprodione (IPR) and chlorpyrifos (CHL). Two bacterial strains (Achromobacter spanius C1 and Pseudomonas rhodesiae C4) isolated from the biomixture of a biopurification system were able to efficiently remove pesticides IPR and CHL at different concentrations (10 to 100 mg L-1) from the liquid medium as individual strains and free consortium. The half-life time (T1/2) for IPR and CHL was determined for individual strains and a free bacterial consortium. However, when the free bacterial consortium was used, a lower T1/2 was obtained, especially for CHL. Based on these results, an immobilized bacterial consortium was formulated with each bacterial strain encapsulated individually in alginate beads. Then, different inoculum concentrations (5, 10, and 15% w/v) of the immobilized consortium were evaluated in batch experiments for IPR and CHL removal. The inoculum concentration of 15% w/v demonstrated the highest pesticide removal. Using this inoculum concentration, the packed-bed bioreactor with an immobilized bacterial consortium was operated in continuous mode at different flow rates (30, 60, and 90 mL h-1) at a pesticide concentration of 50 mg L-1 each. The performance in the bioreactor demonstrated that it is possible to efficiently remove a pesticide mixture of IPR and CHL in a continuous system. The metabolites 3,5-dichloroaniline (3,5-DCA) and 3,5,6-trichloro-2-pyridinol (TCP) were produced, and a slight accumulation of TCP was observed. The bioreactor was influenced by TCP accumulation but was able to recover performance quickly. Finally, after 60 days of operation, the removal efficiency was 96% for IPR and 82% for CHL. The findings of this study demonstrate that it is possible to remove IPR and CHL from pesticide-containing wastewater in a continuous system.

2.
Microorganisms ; 10(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36296169

RESUMEN

Biosurfactant-producing bacteria can be found in contaminated environments such as biopurification systems (BPS) for pesticide treatments. A total of 18 isolates were screened to determine their ability to produce extracellular biosurfactants, using olive oil as the main carbon source. Out of the eighteen isolates, two strains (C11 and C27) were selected for biosurfactant production. The emulsification activities of the C11 and C27 strains using sunflower oil was 58.4 and 53.7%, respectively, and 46.6 and 48.0% using olive oil. Using molecular techniques and MALDI-TOF, the strains were identified as Bacillus amyloliquefaciens (C11) and Streptomyces lavendulae (C27). The submerged cultivation of the two selected strains was carried out in a 1 L stirred-tank bioreactor. The maximum biosurfactant production, indicated by the lowest surface tension measurement, was similar (46 and 45 mN/m) for both strains, independent of the fact that the biomass of the B. amyloliquefaciens C11 strain was 50% lower than the biomass of the S. lavendulae C27 strain. The partially purified biosurfactants produced by B. amyloliquefaciens C11 and S. lavendulae C27 were characterized as a lipopeptide and a glycolipid, respectively. These outcomes highlight the potential of the selected biosurfactant-producing microorganisms for improving pesticides' bioavailability and therefore the degradational efficacy of BPS.

3.
Crit Rev Biotechnol ; 42(3): 431-449, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34233551

RESUMEN

The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas del Metal , Cobre , Humanos , Nanopartículas del Metal/uso terapéutico , Óxidos , SARS-CoV-2 , Plata/farmacología , Distribución Tisular
4.
Artículo en Inglés | MEDLINE | ID: mdl-35010706

RESUMEN

Giant squid hydrolysate (GSH) elaborated from different batches from a fishing company was evaluated for cadmium removal. Fixed-bed column packed with iminodiacetic resin as adsorbent was used. GSH solution at different cadmium concentrations were fed in the fixed-bed column and breakthrough curves were evaluated. A high degree of metal removal from the solution was achieved and the saturation point (Ce/C0 ≤ 0.8) was achieved more quickly at higher concentrations of cadmium. The maximum capacity of adsorption (q0) was obtained using the Thomas model, where 1137.4, 860.4, 557.4, and 203.1 mg g-1 were achieved using GSH with concentrations of 48.37, 20.97, 12.13, and 3.26 mg L-1, respectively. Five cycles of desorption of the resin with HCl (1 M) backflow and regeneration with NaOH (0.5 M) were also evaluated, where no significant differences (p-value > 0.05) were observed between each cycle, with an average of 935.9 mg g-1 of qmax. The in-series columns evaluated reached a total efficiency of 90% on average after the third column in GSH with a cadmium concentration of 20.97 mg L-1. This kind of configuration should be considered the best alternative for cadmium removal from GSH. Additionally, the chemical composition of GSH, which was considered a quality parameter, was not affected by cadmium adsorption.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Adsorción , Cadmio , Decapodiformes , Contaminantes Químicos del Agua/análisis
5.
Biochim Biophys Acta Gen Subj ; 1865(1): 129727, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890704

RESUMEN

BACKGOUND: Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS: We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS: All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS: Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE: Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.


Asunto(s)
Proteínas Bacterianas/genética , Glucosamina/metabolismo , Rhodococcus/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Proteínas Bacterianas/metabolismo , Duplicación de Gen , Genes Bacterianos , Redes y Vías Metabólicas , Rhodococcus/enzimología , Rhodococcus/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
6.
J Hazard Mater ; 361: 228-236, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30196035

RESUMEN

Copper nanoparticles (NCu) have been proposed as an antimicrobial agent in agriculture. Therefore, NCu may interact with numerous pollutants including pesticides. Little is known about the combined effects of NCu and pesticides in soil. This study aimed at assessing the impact of NCu combined with the herbicide atrazine (ATZ) on soil. We focused on assessing the adsorption and dissipation of ATZ in the presence of NCu and the changes in microbial community profiles. First, ATZ adsorption isotherms (described using the Freundlich equation) were evaluated. After that, soil samples were spiked with NCu (40-60 nm) at 0.05 and 0.15% w/w and ATZ (3 mg a.i kg-1) and incubated for 30 days. The results showed that ATZ adsorption is favored by the presence of NCu. On the other hand, NCu at 0.15% w/w caused a significant decrease in ATZ dissipation, increasing its half-life from 6 to 37 days. Microbial community profiles (bacteria, fungi and nitrifying bacteria) remained relatively stable throughout the evaluated period. Therefore, our findings suggest that NCu can increase the persistence of ATZ in soil, which may be mostly associated to physical-chemical interaction with soil particles more than a microbial impact.


Asunto(s)
Atrazina/análisis , Cobre/análisis , Nanopartículas/análisis , Plaguicidas/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Atrazina/metabolismo , Biodegradación Ambiental , Cobre/metabolismo , Microbiota/efectos de los fármacos , Nanopartículas/metabolismo , Plaguicidas/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo
7.
Reproduction ; 156(4): 331-341, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30306766

RESUMEN

The purpose of this study was to evaluate the intragestational role of ghrelin in offspring development and reproductive programming in a mouse model of ghrelin imbalance during pregnancy. Female mice were injected with ghrelin (supraphysiological levels: 4 nmol/animal/day), antagonist (endogenous ghrelin inhibition with (D-Lys3)GHRP-6, 6 nmol/animal/day) or vehicle (control = normal ghrelin levels) throughout the pregnancy. Parameters evaluated in litters were growth, physical, neurobiological and sexual development and, at adulthood, reproductive function. Litter size and initial weight did not vary between treatments. Male pups from dams treated with ghrelin showed higher body weight increase until adulthood (31.7 ± 0.8 vs control = 29.7 ± 0.7, n = 11­14 litters/treatment; P < 0.05). Postnatal physical and neurobiological development was not modified by treatments. The antagonist accelerated male puberty onset, evidenced as earlier testis descent and increased relative testicular weight (antagonist = 0.5 ± 0.0% vs ghrelin = 0.4 ± 0.0% and control = 0.4 ± 0.0%, n = 5­10 litters/treatment; P < 0.05). At adulthood, these males exhibited lower relative testicular weight and reduced sperm motility (63.9 ± 3.6% vs control = 70.9 ± 3.3 and ghrelin = 75.6 ± 3.0, n = 13­15 animals; P < 0.05), without changes in plasma testosterone or fertility. Female pups intragestationally exposed to the antagonist showed earlier vaginal opening (statistically significant only at Day 25) and higher ovarian volume (antagonist = 1085.7 ± 64.0 mm3 vs ghrelin = 663.3 ± 102.8 mm3 and control = 512.3 ± 116.4 mm3; n = 4­6 animals/treatment; P < 0.05), indicating earlier sexual maturation. At adulthood, these females and those exposed to ghrelin showed a tendency to higher percentages of embryo loss and/or foetal atrophy. In conclusion, ghrelin participates in reproductive foetal programming: alterations in ghrelin activity during pregnancy modified body weight increase and anticipated puberty onset, exerting (or tending to) negative effects on adult reproductive function.


Asunto(s)
Ghrelina/fisiología , Efectos Tardíos de la Exposición Prenatal , Desarrollo Sexual , Animales , Femenino , Masculino , Ratones , Embarazo , Reproducción
8.
Appl Microbiol Biotechnol ; 102(16): 6765-6774, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29872886

RESUMEN

The ability of Baculoviruses to hyper-express very late genes as polyhedrin, the major component of occlusion bodies (OBs) or polyhedra, has allowed the evolution of a system of great utility for biotechnology. The main function of polyhedra in nature is to protect Baculovirus in the environment. The possibility of incorporating foreign proteins into the crystal by fusing them to polyhedrin (POLH) opened novel potential biotechnological uses. In this review, we summarize different applications of Baculovirus chimeric OBs. Basically, the improvement of protein expression and purification with POLH as a fusion partner; the use of recombinant polyhedra as immunogens and antigens, and the incorporation of proteins into polyhedra to improve Baculoviruses as bioinsecticides. The results obtained in each area and the future trends in these topics are also discussed.


Asunto(s)
Baculoviridae/genética , Proteínas de la Matriz de Cuerpos de Oclusión/genética , Proteínas Recombinantes de Fusión/genética , Animales , Biotecnología , Insecticidas
10.
Biodegradation ; 28(5-6): 395-412, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28780760

RESUMEN

The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Plaguicidas/metabolismo , Contaminantes del Suelo/metabolismo , Atrazina/química , Atrazina/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Cloropirifos/química , Cloropirifos/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Plaguicidas/química , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/química
11.
J Appl Microbiol ; 123(4): 886-895, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28718996

RESUMEN

AIMS: The aim of this study was to evaluate the synthesis of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi (WRF) using peels or discarded potato as the sole nutrient source. METHODS AND RESULTS: The strain Trametes hirsuta Ru-513 highlighted for its laccase activity (595 ± 33 U l-1 ), which is able to decolourize 87% of an anthraquinone dye using potato peels as the sole nutritional support. A native polyacrylamide gel of laccase proteins showed the presence of two isoenzymes, corresponding to proteins of 56 and 67 kDa, which were detected by SDS-PAGE. The antifungal activity of ethyl acetate extracts was evaluated by the agar diffusion method, where Anthracophyllum discolor Sp4 and Inonotus sp. Sp2 showed the highest inhibition zones of Mucor miehei. The fungal extracts also inhibited Fusarium oxysporum and Botrytis cinerea growth, with inhibition zones of up to 18 mm. The extract with the highest antifungal activity, from A. discolor Sp4 grown in discarded potato medium, was analysed using a gas chromatograph coupled to a mass spectrometer. Among the identified compounds, chlorinated aromatic compounds and veratryl alcohol were the most abundant compounds. CONCLUSIONS: The results revealed the relevance of potato waste valorization for the sustainable production of ligninolytic enzymes and antifungal compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports the synthesis of ligninolytic enzymes and diffusible antifungal compounds by WRF using potato wastes as the sole nutrient source and suggests a relationship between the enzymatic activity and the synthesis of antifungal compounds. These compounds and the synthesis of halogen compounds by WRF using agro-industrial wastes have been poorly studied before.


Asunto(s)
Agaricales/metabolismo , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Solanum tuberosum/microbiología , Residuos Sólidos/análisis , Trametes/enzimología , Agaricales/química , Agaricales/crecimiento & desarrollo , Colorantes/metabolismo , Medios de Cultivo/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Residuos Industriales/análisis , Trametes/química , Trametes/crecimiento & desarrollo , Trametes/metabolismo
12.
J Environ Manage ; 187: 103-110, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27886583

RESUMEN

Biobeds are on-farm biodepuration systems whose efficiency rely on their high pesticide biodegradation capacity. We evaluated two optimization strategies, bioaugmentation and/or rhizosphere-assisted biodegradation, to maximize the dissipation capacity of biobeds. Iprodione was used as a model pesticide. Its dissipation and metabolism was determined in a biobed packing material inoculated with an iprodione-degrading Arthrobacter strain C1 (bioaugmentation, treatments B+C1) and/or seeded with ryegrass (rhizosphere-assisted biodegradation, treatments B+P). The impact of those strategies on the activity and composition of the microbial community was determined. Bioaugmentation accelerated the dissipation of iprodione which was further enhanced in the bioaugmented, rhizosphere-assisted treatment (treatment B+P+C1, Half-life (DT50) = 3.4 d), compared to the non-bioaugmented, non rhizosphere-assisted control (DT50 = 9.5 d, treatment B). Bioaugmentation resulted in the earlier formation of intermediate formation of metabolites I (3,5-dichlorophenyl-carboxamide), II (3,5-dichlorophenylurea acetate) and 3,5-dichloroaniline (3,5-DCA). The latter was further dissipated by the indigenous microbial community. Acid phosphatase (AP) and ß-glucosidase (GLU) were temporarily stimulated in rhizosphere-assisted treatments, whereas a stimulation of the fluorescein diacetate (FDA) hydrolytic activity in the bioaugmented treatments coincided with the hydrolysis of iprodione. q-PCR showed that changes in the abundance of alpha-proteobacteria and firmicutes was driven by the presence of rhizosphere while bioaugmentation had no significant effect.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Biodegradación Ambiental , Hidantoínas/metabolismo , Plaguicidas/metabolismo , Rizosfera , Administración de Residuos/métodos , Fosfatasa Ácida/metabolismo , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacocinética , Compuestos de Anilina/metabolismo , Arthrobacter/metabolismo , Granjas , Semivida , Hidantoínas/farmacocinética , Lolium/metabolismo , Plaguicidas/farmacocinética , beta-Glucosidasa/metabolismo
13.
AMB Express ; 6(1): 104, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27815917

RESUMEN

Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.

14.
Electron. j. biotechnol ; Electron. j. biotechnol;16(6): 11-11, Nov. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-696552

RESUMEN

Background: The biobed is a simple biopurification system used to prevent the point-source pesticide contamination that occurs at farm level. The typical composition of the biomixture used in this system is soil, peat and straw in volumetric proportions of 1:1:2. The principal component is straw due to its positive effects on biological activity and thus pesticide degradation. However, access to straw can be limited in some regions, so it must be replaced by other more readily available lignocellulosic residues. Results: Therefore, two alternate lignocellulosic materials (barley husks and pine sawdust) were evaluated as partial substitutes for straw. The degradation of a repeatedly applied mixture of six pesticides by these alternates was assessed. The microbial respiration and fluorescein diacetate (FDA) hydrolysis activity were also assessed. The results showed that the highest degradation efficiency was found in mixtures containing straw and barley husks. Each biomixtures tested achieved a high degradation (50 to 90%) of all the pesticides used except iprodione. Repeated applications of pesticides resulted in a slowing of the degradation rate of all pesticide types in all biomixtures. FDA activity and microbial respiration were higher in the biomixtures containing barley husks and straw compared to the mixture with pine sawdust, a result consistent with the pesticide degradations observed. Conclusions: This paper demonstrates that the straw in the traditional biomixture can be partially replaced by other lignocellulosic materials to efficiently degrade a mixture of pesticides, even when the pesticides are added in successive applications and high concentrations.


Asunto(s)
Plaguicidas/metabolismo , Biodegradación Ambiental , Celulosa/metabolismo , Lignina/metabolismo , Plaguicidas/aislamiento & purificación , Granjas
15.
J Vet Intern Med ; 27(6): 1535-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24112533

RESUMEN

BACKGROUND: Central nervous system blood vessel thrombosis is a part of the pathogenesis of equid herpesvirus-associated myeloencephalopathy (EHM). D-dimers (DD) are stable breakdown products of cross-linked fibrin, and increased DD-plasma concentrations could reflect the degree of systemic coagulation during EHV-1 infection. HYPOTHESIS: We hypothesized that blood DD concentrations will be increased during periods of EHV-1 fever and viremia, reflecting an activated coagulation cascade with fibrinolysis. ANIMALS: Twenty-eight equids were infected with EHV-1 in 3 experimental infection studies. Three (uninfected) horses were included in a separate study to evaluate methodology for DD concentration measurements. METHODS: Clinical data and quantitative viremia were evaluated, and DD concentrations were measured in blood samples on the day before the infection and during days 1-12 postchallenge. Uninfected horses were sampled every 3 hours for 48 hours. Logistic and linear regression was used to investigate the potential association between the fever and viremia with the presence or absence of DD concentrations in peripheral blood. RESULTS: DD concentrations were increased for 1-8 days in the majority of infected animals. Both viremia (odds ratio [OR] 6.3; 95% confidence interval [CI] 3.4-11.8; P = .0013) and fever (OR 4.9; CI 2.3-10.1; P = .001) were strongly associated with the likelihood of detecting DD in peripheral blood. CONCLUSIONS AND CLINICAL IMPORTANCE: EHV-1 viremia is associated with increases in DD concentration in horses and ponies. This indicates that EHV-1 viremia can lead to an activation of coagulation and fibrinolysis.


Asunto(s)
Productos de Degradación de Fibrina-Fibrinógeno/inmunología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/virología , Viremia/veterinaria , Animales , ADN Viral/química , ADN Viral/genética , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Enfermedades de los Caballos/inmunología , Caballos , Leucocitos Mononucleares , Masculino , Reacción en Cadena de la Polimerasa/veterinaria , Análisis de Regresión , Viremia/sangre , Viremia/inmunología , Viremia/virología
16.
J Hazard Mater ; 260: 459-67, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23811367

RESUMEN

The effects of repeated atrazine application (40 mg a.i.kg(-1)) on its degradation, microbial communities and enzyme activities were studied in a peat based biomixture composed by straw, soil and peat in the volumetric proportions of 2:1:1 that can be used in on-farm biopurification system. Atrazine removal efficiency was high (96%, 78% and 96%) after each atrazine application and did not show a lag phase. Microbial enzyme activities were reduced significantly with atrazine application but rapidly recovered. Microbial diversity obtained by BiologEcoplate was similar after the first and second atrazine application. However, an inhibitory effect was observed after the third application. After each atrazine application, culturable fungi were reduced, but rapidly recovered without significant changes in culturable bacteria and actinomycetes compared to the control. Denaturing gradient gel electrophoresis (DGGE) patterns demonstrated that microbial community structure remained relatively stable in time when compared to the controls. In conclusion, our results demonstrated that after successive ATZ applications, the peat based biomixture had a good degradation capacity. Moreover, microbiological assays demonstrated the robustness of the peat based biomixture from a microbiological point of view to support pesticide degradation.


Asunto(s)
Atrazina/análisis , Atrazina/química , Consorcios Microbianos/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/análisis , Actinobacteria/clasificación , Actinobacteria/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biodegradación Ambiental , Electroforesis en Gel de Gradiente Desnaturalizante , Hongos/clasificación , Hongos/efectos de los fármacos , Plaguicidas/química , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Suelo , Contaminantes del Suelo/metabolismo , Factores de Tiempo
17.
Chemosphere ; 92(10): 1361-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23746365

RESUMEN

The biobed systems were designed to retain and to degrade pesticides through the properties of a biomixture composed of straw (ST), topsoil and peat (PT) 2:1:1 v/v. The ST is the main substrate in the biomixture, as it allows the proliferation of fungi that promotes pesticide degradation. The use of readily available components in the biomixture is an important aspect to build a biobed. Therefore, potential use of readily available wastes as barley husk (BH), sawdust (SW) and oat husk (OH), as total or partial substitutes of ST were tested in pesticide degradation studies. Metabolite formation and the biological activities were also evaluated. Biomixture composed of OH was highly efficient in pesticide degradation, with t½ values of 28.6, 58.9 and 26.8 d for atrazine (ATZ), chlorpyrifos (CHL) and isoproturon (ISP). On the other hand, comparable for degrading capacities with the ST based biomixture were obtained with SW and BH, but only as partial replacement. Contrarily, high t½ values (more than 100 d) were obtained in biomixtures with total substitution of ST by SW or BH. Metabolite formation was observed in all biomixtures tested, but without clear formation patterns. Moreover, high and stable biological activity was observed in the biomixtures composed of OH. Therefore, our results demonstrated that ST can be partial or totally replaced by OH in the biomixture allowing an efficient degradation of pesticide mixture. However, it is recommended that ST can be only partially replaced by BH and SW in the biomixture to allow efficient pesticide degradation.


Asunto(s)
Celulosa/metabolismo , Plaguicidas/aislamiento & purificación , Microbiología del Suelo , Contaminantes del Suelo/aislamiento & purificación , Suelo/química , Biodegradación Ambiental , Celulosa/química , Hongos/metabolismo , Plaguicidas/metabolismo , Contaminantes del Suelo/metabolismo
18.
Biodegradation ; 24(5): 711-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23386245

RESUMEN

The effect of the terpenes α-pinene, eucalyptol, and limonene, individually and as mixtures, on atrazine (ATZ) biodegradation and on biological activity in a biobed biomixture was evaluated. Additionally, terpenes emitted from the biomixture were captured using solid-phase microextraction. Terpenes added individually at relatively low concentrations (50 µg kg(-1)) significantly enhanced ATZ degradation and biological activity during the first incubation days. No significant effect on ATZ degradation was found from adding the terpene mixture, and, interestingly, an inhibitory effect on phenoloxidase activity was found during the first 20 days of incubation when mixed terpenes were present at 100 µg kg(-1). Capturing terpenes demonstrated that during the first hour of incubation a significant fraction of the terpenes was volatilized. These results are the first to demonstrate the feasibility of using terpenes to enhance the degradation of a pesticide. However, successive applications of terpenes or the addition of materials that slowly release terpenes could sustain the ATZ degradation enhancement.


Asunto(s)
Atrazina/metabolismo , Reactores Biológicos/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Fluoresceínas/metabolismo , Semivida , Hidrólisis , Monofenol Monooxigenasa/metabolismo , Terpenos , Volatilización
19.
Electron. j. biotechnol ; Electron. j. biotechnol;15(6): 8-8, Nov. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-662206

RESUMEN

Six strains of white-rot fungi isolated from southern Chile were evaluated for their ergosterol/biomass correlation and ligninolytic potential in solid medium to formulate pellets for Reactive Orange 165 (RO165) decolourization. The fungus Anthracophyllum discolor was selected to formulate complex pellets (fungal mycelium, sawdust, and activated carbon), coated pellets (complex pellet + alginate) and simple pellets (fungal mycelium). The activity of ligninolytic enzymes (laccase, manganese peroxidase, manganese-independent peroxidase, and lignin peroxidase) was evaluated in both the complex and coated pellets in modified Kirk medium, and the morphology of the pellets was studied using scanning electron microscopy (SEM). Complex pellets of A. discolor showed a higher enzymatic production mainly MnP (38 U L-1 at day 15) compared to coated and simple pellets. Examinations using SEM showed that both pellets produced a black core that was entrapped by a layer of fungal mycelium. Decolourization of RO165 was demonstrated with all the pellets formulated. However, the highest and fastest decolourization was obtained with complex pellets (100 percent at day 8). Therefore, complex pellets of A. discolor can be used for the biological treatment of wastewater contaminated with RO165.


Asunto(s)
Compuestos Azo , Agaricales/enzimología , Biodegradación Ambiental , Colorantes , Lignina , Remoción de Contaminantes/métodos
20.
Chemosphere ; 88(2): 224-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440639

RESUMEN

The biomixture is a principal element controlling the degradation efficacy of the biobed. The maturity of the biomixture used in the biobed affects its overall performance of the biobed, but this is not well studied yet. The aim of this research was to evaluate the effect of using a typical composition of Swedish biomixture at different maturity stages on the degradation of chlorpyrifos. Tests were made using biomixture at three maturity stages: 0 d (BC0), 15 d (BC15) and 30 d (BC30); chlorpyrifos was added to the biobeds at final concentration of 200, 320 and 480 mg kg(-1). Chlorpyrifos degradation in the biomixture was monitored over time. Formation of TCP (3,5,6-trichloro-2-pyrinidol) was also quantified, and hydrolytic and phenoloxidase activities measured. The biomixture efficiently degraded chlorpyrifos (degradation efficiency >50%) in all the evaluated maturity stages. However, chlorpyrifos degradation decreased with increasing concentrations of the pesticide. TCP formation occurred in all biomixtures, but a major accumulation was observed in BC30. Significant differences were found in both phenoloxidase and hydrolytic activities in the three maturity stages of biomixture evaluated. Also, these two biological activities were affected by the increase in pesticide concentration. In conclusion, our results demonstrated that chlorpyrifos can be degraded efficiently in all the evaluated maturity stages.


Asunto(s)
Cloropirifos/metabolismo , Plaguicidas/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Cloropirifos/análisis , Plaguicidas/análisis , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA