Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37372646

RESUMEN

The knee is an essential part of our body, and identifying its injuries is crucial since it can significantly affect quality of life. To date, the preferred way of evaluating knee injuries is through magnetic resonance imaging (MRI), which is an effective imaging technique that accurately identifies injuries. The issue with this method is that the high amount of detail that comes with MRIs is challenging to interpret and time consuming for radiologists to analyze. The issue becomes even more concerning when radiologists are required to analyze a significant number of MRIs in a short period. For this purpose, automated tools may become helpful to radiologists assisting them in the evaluation of these images. Machine learning methods, in being able to extract meaningful information from data, such as images or any other type of data, are promising for modeling the complex patterns of knee MRI and relating it to its interpretation. In this study, using a real-life imaging protocol, a machine-learning model based on convolutional neural networks used for detecting medial meniscus tears, bone marrow edema, and general abnormalities on knee MRI exams is presented. Furthermore, the model's effectiveness in terms of accuracy, sensitivity, and specificity is evaluated. Based on this evaluation protocol, the explored models reach a maximum accuracy of 83.7%, a maximum sensitivity of 82.2%, and a maximum specificity of 87.99% for meniscus tears. For bone marrow edema, a maximum accuracy of 81.3%, a maximum sensitivity of 93.3%, and a maximum specificity of 78.6% is reached. Finally, for general abnormalities, the explored models reach 83.7%, 90.0% and 84.2% of maximum accuracy, sensitivity and specificity, respectively.


Asunto(s)
Traumatismos de la Rodilla , Calidad de Vida , Humanos , Traumatismos de la Rodilla/diagnóstico por imagen , Traumatismos de la Rodilla/patología , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Sensibilidad y Especificidad , Aprendizaje Automático
2.
Artículo en Inglés | MEDLINE | ID: mdl-37107856

RESUMEN

Advance assessment of the potential functional improvement of patients undergoing a rehabilitation program is crucial in developing precision medicine tools and patient-oriented rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we propose a novel approach to this problem using machine learning algorithms focused on assessing the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based ensemble machine learning models and train them on a private training cohort of orthopedic (OP) and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set for each category of patients using root mean squared error (RMSE) as an absolute error indicator between the predicted mBI and the actual values. The best results obtained from the study are an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial intelligence in predicting the functional improvement of patients undergoing rehabilitation.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Algoritmos , Pacientes , Actividades Cotidianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...