Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1213261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476668

RESUMEN

The bacterial genus Xanthomonas is responsible for disease outbreaks in several hundred plant species, many of them economically important crops. In the era of next-generation sequencing, thousands of strains from this genus have now been sequenced as part of isolated studies that focus on outbreak characterization, host range, diversity, and virulence factor identification. However, these data have not been synthesized and we lack a comprehensive phylogeny for the genus, with some species designations in public databases still relying on phenotypic similarities and representative sequence typing. The extent of genetic cohesiveness among Xanthomonas strains, the distribution of virulence factors across strains, and the impact of evolutionary history on host range across the genus are also poorly understood. In this study, we present a pangenome analysis of 1,910 diverse Xanthomonas genomes, highlighting their evolutionary relationships, the distribution of virulence-associated genes across strains, and rates of horizontal gene transfer. We find a number of broadly conserved classes of virulence factors and considerable diversity in the Type 3 Secretion Systems (T3SSs) and Type 3 Secreted Effector (T3SE) repertoires of different Xanthomonas species. We also use these data to re-assign incorrectly classified strains to phylogenetically informed species designations and find evidence of both monophyletic host specificity and convergent evolution of phylogenetically distant strains to the same host. Finally, we explore the role of recombination in maintaining genetic cohesion within the Xanthomonas genus as a result of both ancestral and recent recombination events. Understanding the evolutionary history of Xanthomonas species and the relationship of key virulence factors with host-specificity provides valuable insight into the mechanisms through which Xanthomonas species shift between hosts and will enable us to develop more robust resistance strategies against these highly virulent pathogens.

2.
Genetics ; 219(2)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34849876

RESUMEN

Understanding how mutations affect survivability is a key component to knowing how organisms and complex traits evolve. However, most mutations have a minor effect on fitness and these effects are difficult to resolve using traditional molecular techniques. Therefore, there is a dire need for more accurate and precise fitness measurements methods. Here, we measured the fitness effects in Burkholderia cenocepacia HI2424 mutation accumulation (MA) lines using droplet-digital polymerase chain reaction (ddPCR). Overall, the fitness measurements from ddPCR-MA are correlated positively with fitness measurements derived from traditional phenotypic marker assays (r = 0.297, P = 0.05), but showed some differences. First, ddPCR had significantly lower measurement variance in fitness (F = 3.78, P < 2.6 × 10-13) in control experiments. Second, the mean fitness from ddPCR-MA measurements were significantly lower than phenotypic marker assays (-0.0041 vs -0.0071, P = 0.006). Consistent with phenotypic marker assays, ddPCR-MA measurements observed multiple (27/43) lineages that significantly deviated from mean fitness, suggesting that a majority of the mutations are neutral or slightly deleterious and intermixed with a few mutations that have extremely large effects. Of these mutations, we found a significant excess of mutations within DNA excinuclease and Lys R transcriptional regulators that have extreme deleterious and beneficial effects, indicating that modifications to transcription and replication may have a strong effect on organismal fitness. This study demonstrates the power of ddPCR as a ubiquitous method for high-throughput fitness measurements in both DNA- and RNA-based organisms regardless of cell type or physiology.


Asunto(s)
Burkholderia cenocepacia/genética , Aptitud Genética , Acumulación de Mutaciones , Tasa de Mutación , Fenotipo , Reacción en Cadena de la Polimerasa/métodos
3.
Microb Genom ; 7(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34227931

RESUMEN

Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.


Asunto(s)
Productos Agrícolas/microbiología , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Pseudomonas fluorescens/genética , Pseudomonas syringae/genética , Tipificación de Secuencias Multilocus , Plantas/microbiología , Pseudomonas fluorescens/aislamiento & purificación , Pseudomonas fluorescens/patogenicidad , Pseudomonas syringae/aislamiento & purificación , Pseudomonas syringae/patogenicidad , Turquía , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma
4.
Front Plant Sci ; 11: 1290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983191

RESUMEN

The Arabidopsis nucleotide-binding leucine-rich repeat protein ZAR1 can recognize at least six distinct families of pathogenic effector proteins to mount an effector-triggered immune response. This remarkable immunodiversity appears to be conveyed by receptor-like cytoplasmic kinase (RLCK) complexes, which associate with ZAR1 to sense several effector-induced kinase perturbations. Here we show that the recently identified ZAR1-mediated immune responses against the HopX1, HopO1, and HopBA1 effector families of Pseudomonas syringae rely on an expanded diversity of RLCK sensors. We show that individual sensors can recognize distinct effector families, thereby contributing to the expanded surveillance potential of ZAR1 and supporting its role as a guardian of the plant kinome.

5.
Science ; 367(6479): 763-768, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32054757

RESUMEN

Effector-triggered immunity (ETI), induced by host immune receptors in response to microbial effectors, protects plants against virulent pathogens. However, a systematic study of ETI prevalence against species-wide pathogen diversity is lacking. We constructed the Pseudomonas syringae Type III Effector Compendium (PsyTEC) to reduce the pan-genome complexity of 5127 unique effector proteins, distributed among 70 families from 494 strains, to 529 representative alleles. We screened PsyTEC on the model plant Arabidopsis thaliana and identified 59 ETI-eliciting alleles (11.2%) from 19 families (27.1%), with orthologs distributed among 96.8% of P. syringae strains. We also identified two previously undescribed host immune receptors, including CAR1, which recognizes the conserved effectors AvrE and HopAA1, and found that 94.7% of strains harbor alleles predicted to be recognized by either CAR1 or ZAR1.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Pseudomonas syringae/genética
6.
Front Plant Sci ; 10: 418, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024592

RESUMEN

Diverse Gram-negative pathogens like Pseudomonas syringae employ type III secreted effector (T3SE) proteins as primary virulence factors that combat host immunity and promote disease. T3SEs can also be recognized by plant hosts and activate an effector triggered immune (ETI) response that shifts the interaction back toward plant immunity. Consequently, T3SEs are pivotal in determining the virulence potential of individual P. syringae strains, and ultimately help to restrict P. syringae pathogens to a subset of potential hosts that are unable to recognize their repertoires of T3SEs. While a number of effector families are known to be present in the P. syringae species complex, one of the most persistent challenges has been documenting the complex variation in T3SE contents across a diverse collection of strains. Using the entire pan-genome of 494 P. syringae strains isolated from more than 100 hosts, we conducted a global analysis of all known and putative T3SEs. We identified a total of 14,613 putative T3SEs, 4,636 of which were unique at the amino acid level, and show that T3SE repertoires of different P. syringae strains vary dramatically, even among strains isolated from the same hosts. We also find substantial diversification within many T3SE families, and in many cases find strong signatures of positive selection. Furthermore, we identify multiple gene gain and loss events for several families, demonstrating an important role of horizontal gene transfer (HGT) in the evolution of P. syringae T3SEs. These analyses provide insight into the evolutionary history of P. syringae T3SEs as they co-evolve with the host immune system, and dramatically expand the database of P. syringae T3SEs alleles.

7.
Genome Biol ; 20(1): 3, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606234

RESUMEN

BACKGROUND: Pseudomonas syringae is a highly diverse bacterial species complex capable of causing a wide range of serious diseases on numerous agronomically important crops. We examine the evolutionary relationships of 391 agricultural and environmental strains using whole-genome sequencing and evolutionary genomic analyses. RESULTS: We describe the phylogenetic distribution of all 77,728 orthologous gene families in the pan-genome, reconstruct the core genome phylogeny using the 2410 core genes, hierarchically cluster the accessory genome, identify the diversity and distribution of type III secretion systems and their effectors, predict ecologically and evolutionary relevant loci, and establish the molecular evolutionary processes operating on gene families. Phylogenetic and recombination analyses reveals that the species complex is subdivided into primary and secondary phylogroups, with the former primarily comprised of agricultural isolates, including all of the well-studied P. syringae strains. In contrast, the secondary phylogroups include numerous environmental isolates. These phylogroups also have levels of genetic diversity typically found among distinct species. An analysis of rates of recombination within and between phylogroups revealed a higher rate of recombination within primary phylogroups than between primary and secondary phylogroups. We also find that "ecologically significant" virulence-associated loci and "evolutionarily significant" loci under positive selection are over-represented among loci that undergo inter-phylogroup genetic exchange. CONCLUSIONS: While inter-phylogroup recombination occurs relatively rarely, it is an important force maintaining the genetic cohesion of the species complex, particularly among primary phylogroup strains. This level of genetic cohesion, and the shared plant-associated niche, argues for considering the primary phylogroups as a single biological species.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Filogenia , Pseudomonas syringae/genética , Variación Genética , Recombinación Genética , Selección Genética , Sistemas de Secreción Tipo II/genética
8.
mBio ; 9(4)2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131359

RESUMEN

The causes and consequences of spatiotemporal variation in mutation rates remain to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes: Vibrio fischeri, Vibrio cholerae, and Burkholderia cenocepacia Following five mutation accumulation experiments with these bacteria conducted in the near absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosomes of V. fischeri and V. cholerae, where concurrently replicated regions experience similar base substitution mutation rates. The base substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates to those in the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base substitution rates, which along with the inferred ~800-kb wave period suggests that the source of the periodicity is not sequence specific but rather a systematic process related to the cell cycle. These results support the notion that base substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load.IMPORTANCE That mutation rates vary within bacterial genomes is well known, but the detailed study of these biases has been made possible only recently with contemporary sequencing methods. We applied these methods to understand how bacterial genomes with multiple chromosomes, like those of Vibrio and Burkholderia, might experience heterogeneous mutation rates because of their unusual replication and the greater genetic diversity found on smaller chromosomes. This study captured thousands of mutations and revealed wave-like rate variation that is synchronized with replication timing and not explained by sequence context. The scale of this rate variation over hundreds of kilobases of DNA strongly suggests that a temporally regulated cellular process may generate wave-like variation in mutation risk. These findings add to our understanding of how mutation risk is distributed across bacterial and likely also eukaryotic genomes, owing to their highly conserved replication and repair machinery.


Asunto(s)
Burkholderia cenocepacia/genética , Replicación del ADN , Genoma Bacteriano , Tasa de Mutación , Vibrio/genética , Aliivibrio fischeri/genética , Ciclo Celular , Cromosomas Bacterianos/genética , Reparación de la Incompatibilidad de ADN/genética , Variación Genética , Periodicidad , Vibrio cholerae/genética
9.
PLoS Pathog ; 14(3): e1006907, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554137

RESUMEN

Staphylococcus aureus exhibits many defenses against host innate immunity, including the ability to replicate in the presence of nitric oxide (NO·). S. aureus NO· resistance is a complex trait and hinges on the ability of this pathogen to metabolically adapt to the presence of NO·. Here, we employed deep sequencing of transposon junctions (Tn-Seq) in a library generated in USA300 LAC to define the complete set of genes required for S. aureus NO· resistance. We compared the list of NO·-resistance genes to the set of genes required for LAC to persist within murine skin infections (SSTIs). In total, we identified 168 genes that were essential for full NO· resistance, of which 49 were also required for S. aureus to persist within SSTIs. Many of these NO·-resistance genes were previously demonstrated to be required for growth in the presence of this immune radical. However, newly defined genes, including those encoding SodA, MntABC, RpoZ, proteins involved with Fe-S-cluster repair/homeostasis, UvrABC, thioredoxin-like proteins and the F1F0 ATPase, have not been previously reported to contribute to S. aureus NO· resistance. The most striking finding was that loss of any genes encoding components of the F1F0 ATPase resulted in mutants unable to grow in the presence of NO· or any other condition that inhibits cellular respiration. In addition, these mutants were highly attenuated in murine SSTIs. We show that in S. aureus, the F1F0 ATPase operates in the ATP-hydrolysis mode to extrude protons and contribute to proton-motive force. Loss of efficient proton extrusion in the ΔatpG mutant results in an acidified cytosol. While this acidity is tolerated by respiring cells, enzymes required for fermentation cannot operate efficiently at pH ≤ 7.0 and the ΔatpG mutant cannot thrive. Thus, S. aureus NO· resistance requires a mildly alkaline cytosol, a condition that cannot be achieved without an active F1F0 ATPase enzyme complex.


Asunto(s)
Proteínas Bacterianas/genética , Inmunidad Innata/inmunología , Óxido Nítrico/farmacología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/efectos de los fármacos , Virulencia/inmunología , Animales , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Virulencia/efectos de los fármacos , Virulencia/genética
10.
Mol Biol Evol ; 34(1): 93-109, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744412

RESUMEN

The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10-3/genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift.


Asunto(s)
Aliivibrio fischeri/genética , Mutación , Vibrio cholerae/genética , Sesgo , Reparación de la Incompatibilidad de ADN , Replicación del ADN , Genes Bacterianos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Tasa de Mutación
11.
Genetics ; 204(3): 1225-1238, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27672096

RESUMEN

Mutation accumulation (MA) experiments employ the strategy of minimizing the population size of evolving lineages to greatly reduce effects of selection on newly arising mutations. Thus, most mutations fix within MA lines independently of their fitness effects. This approach, more recently combined with genome sequencing, has detailed the rates, spectra, and biases of different mutational processes. However, a quantitative understanding of the fitness effects of mutations virtually unseen by selection has remained an untapped opportunity. Here, we analyzed the fitness of 43 sequenced MA lines of the multi-chromosome bacterium Burkholderia cenocepacia that had each undergone 5554 generations of MA and accumulated an average of 6.73 spontaneous mutations. Most lineages exhibited either neutral or deleterious fitness in three different environments in comparison with their common ancestor. The only mutational class that was significantly overrepresented in lineages with reduced fitness was the loss of the plasmid, though nonsense mutations, missense mutations, and coding insertion-deletions were also overrepresented in MA lineages whose fitness had significantly declined. Although the overall distribution of fitness effects was similar between the three environments, the magnitude and even the sign of the fitness of a number of lineages changed with the environment, demonstrating that the fitness of some genotypes was environmentally dependent. These results present an unprecedented picture of the fitness effects of spontaneous mutations in a bacterium with multiple chromosomes and provide greater quantitative support for the theory that the vast majority of spontaneous mutations are neutral or deleterious.


Asunto(s)
Cromosomas Bacterianos/genética , Aptitud Genética , Acumulación de Mutaciones , Selección Genética , Burkholderia cenocepacia/genética , Codón sin Sentido , Genotipo , Mutación Missense
12.
G3 (Bethesda) ; 6(8): 2583-91, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27317782

RESUMEN

Mutations are the ultimate source of variation used for evolutionary adaptation, while also being predominantly deleterious and a source of genetic disorders. Understanding the rate of insertion-deletion mutations (indels) is essential to understanding evolutionary processes, especially in coding regions, where such mutations can disrupt production of essential proteins. Using direct estimates of indel rates from 14 phylogenetically diverse eukaryotic and bacterial species, along with measures of standing variation in such species, we obtain results that imply an inverse relationship of mutation rate and effective population size. These results, which corroborate earlier observations on the base-substitution mutation rate, appear most compatible with the hypothesis that natural selection reduces mutation rates per effective genome to the point at which the power of random genetic drift (approximated by the inverse of effective population size) becomes overwhelming. Given the substantial differences in DNA metabolism pathways that give rise to these two types of mutations, this consistency of results raises the possibility that refinement of other molecular and cellular traits may be inversely related to species-specific levels of random genetic drift.


Asunto(s)
Flujo Genético , Mutación INDEL , Tasa de Mutación , Agrobacterium tumefaciens/genética , Evolución Biológica , Evolución Molecular , Genoma , Tamaño del Genoma , Selección Genética , Staphylococcus epidermidis/genética , Vibrio cholerae/genética
13.
Proc Natl Acad Sci U S A ; 113(18): 5047-52, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091964

RESUMEN

The effect of a mutation depends on its interaction with the genetic background in which it is assessed. Studies in experimental systems have demonstrated that such interactions are common among beneficial mutations and often follow a pattern consistent with declining evolvability of more fit genotypes. However, these studies generally examine the consequences of interactions between a small number of focal mutations. It is not clear, therefore, that findings can be extrapolated to natural populations, where new mutations may be transferred between genetically divergent backgrounds. We build on work that examined interactions between four beneficial mutations selected in a laboratory-evolved population of Escherichia coli to test how they interact with the genomes of diverse natural isolates of the same species. We find that the fitness effect of transferred mutations depends weakly on the genetic and ecological similarity of recipient strains relative to the donor strain in which the mutations were selected. By contrast, mutation effects were strongly inversely correlated to the initial fitness of the recipient strain. That is, there was a pattern of diminishing returns whereby fit strains benefited proportionally less from an added mutation. Our results strengthen the view that the fitness of a strain can be a major determinant of its ability to adapt. They also support a role for barriers of transmission, rather than differential selection of transferred DNA, as an explanation of observed phylogenetically determined patterns of restricted recombination among E. coli strains.


Asunto(s)
Escherichia coli/genética , Interacción Gen-Ambiente , Aptitud Genética/genética , Modelos Genéticos , Mutación/genética , Selección Genética/genética , Simulación por Computador , Ecosistema , Epistasis Genética , Escherichia coli/clasificación , Medición de Riesgo/métodos
14.
Evolution ; 70(3): 586-99, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26995338

RESUMEN

Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first-step beneficial mutants derived from naïve and adapted genotypes used in a long-term experimental evolution of Escherichia coli. Whole-genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion.


Asunto(s)
Escherichia coli/genética , Escherichia coli/clasificación , Aptitud Genética , Pleiotropía Genética , Glucosa/metabolismo , Mutación , Selección Genética
15.
Genetics ; 200(3): 935-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25971664

RESUMEN

Spontaneous mutations are ultimately essential for evolutionary change and are also the root cause of many diseases. However, until recently, both biological and technical barriers have prevented detailed analyses of mutation profiles, constraining our understanding of the mutation process to a few model organisms and leaving major gaps in our understanding of the role of genome content and structure on mutation. Here, we present a genome-wide view of the molecular mutation spectrum in Burkholderia cenocepacia, a clinically relevant pathogen with high %GC content and multiple chromosomes. We find that B. cenocepacia has low genome-wide mutation rates with insertion-deletion mutations biased toward deletions, consistent with the idea that deletion pressure reduces prokaryotic genome sizes. Unlike prior studies of other organisms, mutations in B. cenocepacia are not AT biased, which suggests that at least some genomes with high %GC content experience unusual base-substitution mutation pressure. Importantly, we also observe variation in both the rates and spectra of mutations among chromosomes and elevated G:C > T:A transversions in late-replicating regions. Thus, although some patterns of mutation appear to be highly conserved across cellular life, others vary between species and even between chromosomes of the same species, potentially influencing the evolution of nucleotide composition and genome architecture.


Asunto(s)
Burkholderia cenocepacia/genética , Genoma Bacteriano , Tasa de Mutación , Mutación , Composición de Base
16.
Proc Biol Sci ; 279(1746): 4382-8, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22951743

RESUMEN

The trade-off between growth rate and yield can limit population productivity. Here we tested for this life-history trade-off in replicate haploid and diploid populations of Saccharomyces cerevisiae propagated in glucose-limited medium in batch cultures for 5000 generations. The yield of single clones isolated from the haploid lineages, measured as both optical and population density at the end of a growth cycle, declined during selection and was negatively correlated with growth rate. Initially, diploid populations did not pay this cost of adaptation but haploidized after about 1000-3000 generations of selection, and this ploidy transition was associated with a decline in yield caused by reduced cell size. These results demonstrate the experimental evolution of a trade-off between growth rate and yield, caused by antagonistic pleiotropy, during adaptation in haploids and after an adaptive transition from diploidy to haploidy.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Selección Genética , Adaptación Fisiológica , Evolución Biológica , Biomasa , Diploidia , Haploidia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...