Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Biochem Biophys ; 698: 108723, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321111

RESUMEN

PURPOSE: Indirubin-3'-monoxime (I3M) induces cell death in many cancer cells; however, whether I3M regulates paraptosis is unclear. The present study aimed to investigate I3M-induced paraptosis. METHODS: We treated various cancer cells with I3M, and measured vacuole formation (a paraptosis marker) and the regulating signaling pathway such as endoplasmic reticulum (ER) stress, reactive oxygen species, and proteasomal dysfunction. RESULTS: We found that I3M induced small vacuole formation in MDA-MB-231 breast cancer cells and transient knockdown of eIF2α and CHOP significantly downregulated vacuolation in the ER and mitochondria, as well as cell death in response to I3M, indicating that I3M-meditaed paraptosis was upregulated by ER stress. Moreover, I3M accumulated ubiquitinylated proteins via proteasome dysfunction, which stimulated ER stress-mediated Ca2+ release. A Ca2+ chelator significantly downregulated vacuolation in the ER and mitochondria as well as cell death, suggesting that Ca2+ was a key regulator in I3M-induced paraptosis. Our results also revealed that Ca2+ finally transited in mitochondria through mitochondrial Ca2+ uniporter (MCU), causing I3M-mediated paraptosis; however, the paraptosis was completely inhibited by, ruthenium red, an MCU inhibitor. CONCLUSION: I3M induced proteasomal dysfunction-mediated ER stress and subsequently promoted Ca2+ release, which was accumulated in the mitochondria via MCU, thus causing paraptosis in MDA-MB-231 breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Oximas/farmacología , Muerte Celular Regulada/efectos de los fármacos , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción CHOP/metabolismo , Vacuolas/metabolismo
2.
Antioxidants (Basel) ; 9(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575515

RESUMEN

Glutamine (Gln) is a nonessential α-amino acid for protein biosynthesis. However, the mechanism through which Gln regulates NO production in microglial cells is still unclear. In this study, we investigated whether the presence or absence of Gln affects NO production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Our data revealed that Gln depletion decreased cell viability accompanied by mild cytotoxicity, and blocked LPS-induced NO production concomitant with a significant decrease in inducible NO synthase (iNOS) expression. Additionally, Gln depletion for 24 h blocked the restoration of LPS-mediated NO production in the presence of Gln, suggesting that Gln depletion caused long-term immune deprivation. In particular, sodium-coupled amino acid transporter 1 and 2 (SNAT1 and SNAT2), which are the main Gln transporters, were highly upregulated in LPS-stimulated BV2 microglial cells, in the presence of Gln accompanied by NO production. Regardless of the presence of Gln, LPS positively stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and transient Nrf2 knockdown and HO-1 inhibition stimulated LPS-induced NO production and iNOS expression; however, transient Nrf2 knockdown did not affect SNAT1 and SNAT2 expression, indicating that Gln transporters, SNAT1 and SNAT2, were not regulated by Nrf2, which downregulated the HO-1-mediated NO production. Moreover, Gln depletion significantly reduced LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation; furthermore, a specific ERK inhibitor, PD98059, and transient ERK knockdown attenuated LPS-stimulated NO production and iNOS expression, in the presence of Gln, accompanied by downregulation of SNAT1 and SNAT2, suggesting that the ERK signaling pathway was related to LPS-mediated NO production via SNAT1 and SNAT2. Altogether, our data indicated that extracellular Gln is vital for NO production from microglia in inflammatory conditions.

3.
Antioxidants (Basel) ; 8(10)2019 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-31546731

RESUMEN

Indirubin-3'-monoxime (I3M) exhibits anti-proliferative activity in various cancer cells; however, its anti-cancer mechanism remains incompletely elucidated. This study revealed that I3M promotes the expression of death receptor 5 (DR5) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in HCT116 p53+/+ cells, resulting in caspase-mediated apoptosis. However, this study demonstrated that HCT116 p53-/- cells were insensitive to I3M-mediated apoptosis, indicating that I3M-induced apoptosis depends on the p53 status of HCT116 cells. Additionally, in HCT116 p53-/- cells, I3M significantly increased Ras expression, while in HCT116 p53+/+ cells, it reduced Ras expression. Furthermore, I3M remarkably increased the production of reactive oxygen species (ROS), which were reduced in transient p53 knockdown, indicating that I3M-mediated apoptosis was promoted by p53-mediated ROS production. Our results also showed that I3M enhanced transcription factor C/EBP homologous protein (CHOP) expression, resulted in endoplasmic reticulum (ER) stress-mediated DR5 expression, which was upregulated by ROS production in HCT116 p53+/+ cells. Moreover, co-treatment with I3M and TRAIL enhanced DR5 expression, thereby triggering TRAIL-induced apoptosis of HCT116 p53+/+ cells, which was interfered by a DR5-specific blocking chimeric antibody. In summary, I3M potently enhances TRAIL-induced apoptosis by upregulating DR5 expression via p53-mediated ROS production in HCT116 p53+/+ cells. However, HCT116 p53-/- cells were less sensitive to I3M-mediated apoptosis, suggesting that I3M could be a promising anti-cancer candidate against TRAIL-resistant p53+/+ cancer cells. Additionally, this study also revealed that I3M sensitizes colorectal cancer cells such as HT29 and SW480 to TRAIL-mediated apoptosis.

4.
Food Chem Toxicol ; 127: 53-60, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30851366

RESUMEN

Camptothecin (CPT), a quinoline alkaloid isolated from Camptotheca acuminate, targets topoisomerase I, which is continuously expressed in cancer cells. However, the molecular mechanisms responsible for CPT-induced telomerase inhibition remain unclear. Unexpectedly, we found that CPT upregulates hTERT expression and concomitantly increases telomerase activity. However, transfection of hTERT-targeting siRNA had no effect on CPT-induced G2/M phase arrest, suggesting that CPT-induced telomerase activation was not related to G2/M phase arrest. CPT simultaneously increased Nrf2 expression and the level of intracellular reactive oxygen species (ROS), whereas pretreatment with the antioxidants N-acetyl-cysteine (NAC) or glutathione (GSH) strongly attenuated ROS production, which was accompanied by hTERT downregulation. Additionally, transient Nrf2 knockdown enhanced CPT-induced ROS production and hTERT promoter activity. CPT also upregulated hTERT expression and telomerase activity by inducing c-Myc and Sp1 expression and activity. Moreover, c-Myc stimulated ROS production in response to CPT, leading to Sp1 activation, which promoted hTERT expression and telomerase activity. CPT treatment enhanced the phosphorylation of PI3K and Akt, which led to hTERT phosphorylation into the nucleus. These findings demonstrate that CPT positively regulates telomerase activity by upregulating hTERT expression and phosphorylation via the c-Myc/ROS/Sp1 and PI3K/Akt axis.


Asunto(s)
Camptotecina/farmacología , Genes myc , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Sp1/metabolismo , Telomerasa/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal/efectos de los fármacos
5.
Food Chem Toxicol ; 127: 143-155, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30885713

RESUMEN

Camptothecin (CPT) is a popular therapeutic agent that targets topoisomerase I. Our findings demonstrated that CPT-induced microtubule polymerization results in markedly increased histone H3 phosphorylation. CPT also enhanced interactions between the mitotic checkpoint proteins, Mad2 and Cdc20, and thereby increased mitotic arrest. Transient knockdown of Mad2 completely restored cell cycle progression from CPT-induced mitotic arrest, while simultaneously reduced cyclin B1 and Cdk1 expression. Moreover, we found that c-Jun N-terminal kinase (JNK) acts upstream of Sp1, which upregulates p21-mediated mitotic arrest in response to CPT; furthermore, knockdown of p21 restored cell cycle progression, while inhibition of Cdks completely restored cell cycle progression from CPT-induced mitotic arrest. We hypothesized that, during mitotic arrest in response to CPT, cell survival signaling blocks apoptosis, thereby enhancing mitotic arrest. As expected, a caspase-9 inhibitor, z-LEHD-FMK, and an autophagy inhibitor, 3-methyladenine (3 MA), significantly diminished CPT-induced mitotic arrest. On the other hand, when Mad2 was depleted, z-LEHD-FMK and 3 MA markedly increased apoptosis, and restored cell cycle progression. Taken together, these results suggest that CPT decodes the action of topoisomerase I-mediated tubulin targeting drugs, leading to mitotic arrest by upregulating Mad2 through the JNK-mediated Sp1 pathway and autophagy formation from tubulin polymerization.


Asunto(s)
Camptotecina/farmacología , Proteínas Cdc20/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Mad2/metabolismo , Mitosis/efectos de los fármacos , Factor de Transcripción Sp1/metabolismo , Autofagia , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Ciclina B1/metabolismo , Humanos , Fosforilación , Polimerizacion , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
Food Chem Toxicol ; 121: 648-656, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30266318

RESUMEN

Camptothecin (CPT) from Camptotheca acuminate was discovered for anticancer drugs, which targets topoisomease I. However, whether CPT regulates c-Myc expression has not been understood in endoplasmic reticulum (ER) stress and autophagy. In this study, we found that CPT enhanced c-Myc expression and that the transient knockdown of c-Myc abrogated reactive oxygen species (ROS) generation, which resulted in the accumulation of ER stress-regulating proteins, such as PERK, eIF2α, ATF4, and CHOP. Moreover, the transfection of eIF2α-targeted siRNA attenuated CPT-induced autophagy and decreased the levels of Beclin-1 and Atg7, which indicated that CPT upregulated ER stress-mediated autophagy. In addition, CPT phosphorylated AMPK in response to intracellular Ca2+ release. Ca2+ chelators, ethylene glycol tetraacetic acid and a CaMKII inhibitor, K252a, decreased CPT-induced Beclin-1 and Atg7, and downregulated AMPK phosphorylation, which suggested that CPT-induced Ca2+ release leads to the activation of autophagy through CaMKII-mediated AMPK phosphorylation. CPT also phosphorylated JNK and activated the DNA-binding activity of AP-1; furthermore, knockdown of JNK abolished the expression level of Beclin-1 and Atg7, which implied that the JNK-AP-1 pathway was a potent mediator of CPT-induced autophagy. Our findings indicated that CPT promoted c-Myc-mediated ER stress and ROS generation, which enhances autophagy via the Ca2+-AMPK and JNK-AP-1 pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Antineoplásicos Fitogénicos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Especies Reactivas de Oxígeno , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
7.
Rev. bras. farmacogn ; 28(3): 344-351, May-June 2018. graf
Artículo en Inglés | LILACS | ID: biblio-958867

RESUMEN

ABSTRACT Although β-hydroxyisovalerylshikonin is suggested as a potential therapeutic agent for preventing various cancers, the underlying molecular mechanisms are not completely understood. In the present study, we investigated whether β-hydroxyisovalerylshikonin enhances apoptosis by triggering reactive oxygen species production in colon cancer HCT116 cells. β-Hydroxyisovalerylshikonin significantly inhibited the viability of HCT116 cells with maximum inhibition at 4 µM. Furthermore, treatment with β-hydroxyisovalerylshikonin subsequently increased sub-G1 cells and annexin-V+ cell population. Additionally, pretreatment with the caspase-8 inhibitor, z-IETD-fmk, and the caspase-9 inhibitor, z-LETD-fmk, significantly decreased β-hydroxyisovalerylshikonin-induced apoptosis, suggesting that β-hydroxyisovalerylshikonin promotes apoptosis through both the intrinsic and the extrinsic apoptotic pathways by activating caspase-8 and caspase-9. We also found that mitochondria played an important role in β-hydroxyisovalerylshikonin-mediated apoptosis via the intrinsic pathway. Accordingly, β-hydroxyisovalerylshikonin-induced reactive oxygen species production was evident after treatment with β-hydroxyisovalerylshikonin, and pretreatment with reactive oxygen species inhibitors, N-acetyl-L-cysteine and glutathione, significantly decreased β-hydroxyisovalerylshikonin-induced reactive oxygen species production, resulting in inhibition of apoptosis, which suggests that ROS generation is required for β-hydroxyisovalerylshikonin-mediated apoptosis. Taken together, these results demonstrated that the apoptotic effect of β-hydroxyisovalerylshikonin is enhanced in colon cancer HCT116 cells via reactive oxygen species generation and triggering of the caspase pathways, indicating that β-hydroxyisovalerylshikonin has potential as a therapeutic in the treatment of colon cancers.

8.
Oncotarget ; 9(31): 21744-21757, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774099

RESUMEN

In the present study, we report that camptothecin (CPT) caused irreversible cell cycle arrest at the G2/M phase, and was associated with decreased levels of cell division cycle 25C (Cdc25C) and increased levels of cyclin B1, p21, and phospho-H3. Interestingly, the reactive oxygen species (ROS) inhibitor, glutathione, decreased CPT-induced G2/M phase arrest and moderately induced S phase arrest, indicating that the ROS is required for the regulation of CPT-induced G2/M phase arrest. Furthermore, transient knockdown of nuclear factor-erythroid 2-related factor 2 (Nrf2), in the presence of CPT, increased the ROS' level and further shifted the cell cycle from early S phase to the G2/M phase, indicating that Nrf2 delayed the S phase in response to CPT. We also found that CPT-induced G2/M phase arrest increased, along with the ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2)-Cdc25C axis. Additionally, the proteasome inhibitor, MG132, restored the decrease in Cdc25C levels in response to CPT, and significantly downregulated CPT-induced G2/M phase arrest, suggesting that CPT enhances G2/M phase arrest through proteasome-mediated Cdc25C degradation. Our data also indicated that inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibited CPT-induced p21 and cyclin B1 levels; however, inhibition of ERK blocked CPT-induced G2/M phase arrest, and inhibition of JNK enhanced apoptosis in response to CPT. Finally, we found that CPT-induced G2/M phase arrest circumvented apoptosis by activating autophagy through ATM activation. These findings suggest that CPT-induced G2/M phase arrest through the ROS-ATM-Chk2-Cdc25C axis is accompanied by the activation of autophagy.

9.
Oncotarget ; 9(12): 10324-10342, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535810

RESUMEN

In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, IAP-1, and IAP-2 were inhibited as well. Silibinin also triggered TRAIL-induced apoptosis in A549 cells through upregulation of death receptor 5 (DR5). Pretreatment with DR5/Fc chimeric protein and DR5-targeted small interfering RNA (siRNA) significantly blocked silibinin/TRAIL-mediated apoptosis in A549 cells. Furthermore, silibinin increased the production of reactive oxygen species (ROS), which led to the induction of TRAIL-mediated apoptosis through DR5 upregulation. Antioxidants such as N-acetyl-L-cysteine and glutathione reversed the apoptosis-inducing effects of TRAIL. Silibinin further induced endoplasmic reticulum (ER) stress as was indicated by the increase in ER marker proteins such as PERK, eIF2α, and ATF-4, which stimulate the expression of CCAAT/enhancer binding protein homologous protein (CHOP). CHOP-targeted siRNA eliminated the induction of DR5 and resulted in a significant decrease in silibinin/TRAIL-mediated apoptosis. We also found that silibinin/TRAIL-induced apoptosis was accompanied with intracellular influx of Ca2+, which was stimulated by ER stress and the Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA). Ca2+/calmodulin-dependent protein kinase (CaMKII) inhibitor, K252a, blocked silibinin/TRAIL-induced DR5 expression along with TRAIL-mediated apoptosis. Accordingly, we showed that ROS/ER stress-induced CaMKII activated Sp1, which is an important transcription factor for DR5 expression. Our results showed that silibinin enhanced TRAIL-induced apoptosis by upregulating DR5 expression through the ROS-ER stress-CaMKII-Sp1 axis.

10.
Biochem Biophys Res Commun ; 485(2): 440-445, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202415

RESUMEN

Tumor cell metabolism is a promising target for various cancer treatments. Apart from aerobic glycolysis, cancer cell growth is dependent on glutamine (Gln) supply, leading to their survival and differentiation. Therefore, we examined whether treatment with TNF-related apoptosis-inducing ligand (TRAIL) sensitizes MDA-MB-231 cells to apoptosis under Gln deprivation condition (TRAIL/Gln deprivation). Gln deprivation decreased cell proliferation as expected, but did not induce remarkable cell death. TRAIL/Gln deprivation, however, significantly increased growth inhibition and morphological shrinkage of MDA-MB-231 cells compared to those induced by treatment with either Gln deprivation or TRAIL alone. Moreover, TRAIL/Gln deprivation upregulated the apoptotic sub-G1 phase accompanied with a remarkable decrease of pro-caspase-3, pro-caspase-9, and anti-apoptotic xIAP, and Bcl-2. Increased cleavage of PARP and pro-apoptotic Bid protein expression suggests that TRAIL/Gln deprivation triggers mitochondrion-mediated apoptosis in MDA-MB-231 cells. Additionally, TRAIL/Gln deprivation upregulated the expression of endoplasmic reticulum (ER) stress markers such as ATF4 and phosphorylated eIF2α, thereby enhancing the C/EBP homologous protein (CHOP) protein level. Transient knockdown of CHOP partically reversed TRAIL/Gln deprivation-mediated apoptosis. Accordingly, TRAIL/Gln deprivation enhanced the expression of death receptor 5 (DR5) and transient knockdown of DR5 completely restored TRAIL/Gln deprivation-mediated apoptosis. Taken together, our results suggest that Gln deprivation conditions can be used for the development of new therapies for TRAIL-resistant cancers.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glutamina/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factores de Tiempo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
11.
Mol Cell Biochem ; 418(1-2): 13-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27260301

RESUMEN

Caffeic acid phenethyl ester (CAPE) exhibits various pharmaceutical properties, including anti-bacterial, anti-inflammatory, anti-viral, anti-cancer, and anti-oxidative activity. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been a promising anti-cancer agent that preferentially induces cancer cell apoptosis with negligible cytotoxicity toward normal cells. Therefore, the present study investigated whether CAPE promotes TRAIL-mediated cytotoxicity in hepatocarcinoma Hep3B cells. The present study demonstrated that CAPE sensitized TRAIL-mediated cell death in Hep3B carcinoma cells. The percentages of the apoptotic cells and annexin-V(+) cells significantly increased in combined treatment with CAPE and TRAIL (CAPE/TRAIL). Treatment with pancaspase inhibitor, z-VAD-fmk, attenuated CAPE/TRAIL-induced apoptosis, suggesting that the combined treatment triggers caspase-dependent apoptosis. Additionally, we found that CAPE stimulated the expression of death receptor 5 (DR5) and treatment with DR5/Fc chimera protein significantly blocked CAPE/TRAIL-induced apoptosis, which indicates that CAPE/TRAIL stimulated apoptosis through the binding of TRAIL to DR5. Moreover, expression of transcription factor C/EBP homologous protein (CHOP) markedly increased in response to CAPE and transient knockdown of CHOP abolished CAPE/TRAIL-mediated apoptosis. These results suggest that CHOP is a key regulator in CAPE/TRAIL-mediated apoptosis. Taken together, the present study found that CAPE significantly enhanced TRAIL-mediated apoptosis in Hep3B carcinoma cells and suggested that CAPE has promising potential in chemoprevention of hepatocellular carcinomas.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cafeicos/farmacología , Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biosíntesis , Alcohol Feniletílico/análogos & derivados , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Factor de Transcripción CHOP/biosíntesis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología , Alcohol Feniletílico/farmacología , Regulación hacia Arriba/efectos de los fármacos
12.
Asian Pac J Trop Med ; 9(6): 535-41, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27262063

RESUMEN

OBJECTIVE: To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9). METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity. RESULTS: MECF had no effect on cell viability up to a concentration of 100 µg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity. CONCLUSION: MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231.

13.
Environ Toxicol Pharmacol ; 44: 62-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27131287

RESUMEN

Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation.


Asunto(s)
Antiinflamatorios/farmacología , Dinoprostona/metabolismo , Flavonoides/farmacología , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Animales , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Hemo-Oxigenasa 1/genética , Lipopolisacáridos , Proteínas de la Membrana/genética , Ratones , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
14.
Int Immunopharmacol ; 36: 241-248, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27177083

RESUMEN

Fulvic acid (FA) is known to promote electrochemical balance as a donor or a receptor possessing many biomedical functions. Nevertheless, the effect of FA on the anti-cancer activity has not been elucidated. In the current study, we first isolated FA from humus and investigated whether FA regulates immune-stimulating functions, such as production of nitric oxide (NO), in RAW 264.7 cells. Our data showed that FA slightly enhances cell viability in a dose-dependent manner and secretion of NO from RAW 264.7 cells. It upregulated the protein and mRNA expression of inducible NO synthesis (iNOS). In addition, FA enhanced the DNA-binding activity of nuclear factor-κB (NF-κB) in RAW 264.7 cells; the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) effectively attenuated the expression of FA-stimulated iNOS, suggesting that FA stimulates NF-κB to promote iNOS and NO production. Finally, FA-stimulated culture media (FA-CM) from RAW 264.7 cells were collected and MCA-102 fibrosarcoma cells were cultured in this media. The FA-CM augmented MCA-102 fibrosarcoma cell apoptosis; however, an NO inhibitor N(G)-monomethyl-l-arginine (NMMA) slightly inhibited the FA-CM-mediated MCA-102 fibrosarcoma cell apoptosis, which was accompanied by low levels of NO. In the present study, we found that FA induces the generation of NO and iNOS in RAW 264.7 cells by inducing NF-κB activation; however, NO did not significantly stimulate MCA-102 fibrosarcoma cell apoptosis in the current study. In addition, FA-CM enhanced cell death in various human cancer cells such as Hep3B, LNCaP, and HL60. Taken together, FA most likely stimulates immune-modulating molecules such as NO and induces cancer cell apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Benzopiranos/farmacología , Fibrosarcoma/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Antineoplásicos/química , Apoptosis , Benzopiranos/química , Fibrosarcoma/patología , Células HL-60 , Humanos , Macrófagos/fisiología , Ratones , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Prolina/análogos & derivados , Prolina/farmacología , Células RAW 264.7 , Suelo/química , Tiocarbamatos/farmacología
15.
Int Immunopharmacol ; 35: 61-69, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27032067

RESUMEN

We previously demonstrated the anti-inflammatory effect of water extract of Hydrangea macrophylla in lipopolysaccharide (LPS)-stimulated macrophage cells. Here, we investigated whether hydrangenol, a bioactive component of H. macrophylla, attenuates the expression of nitric oxide (NO) and its associated gene, inducible NO synthase (iNOS), in LPS-stimulated BV2 microglial cells. Our data showed that low dosages of hydrangenol inhibited LPS-stimulated NO release and iNOS expression without any accompanying cytotoxicity. Hydrangenol also suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) subunits, consequently inhibiting DNA-binding activity of NF-κB. Additionally, the NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC) and PS-1145, significantly attenuated LPS-induced iNOS expression, indicating that hydrangenol-induced NF-κB inhibition might be a key regulator of iNOS expression. Furthermore, our data showed that hydrangenol suppresses NO production by inducing heme oxygenase-1 (HO-1). The presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO production. Hydrangenol also promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and subsequently increased its binding activity at the specific antioxidant response element sites. Additionally, transient knockdown of Nrf2 significantly downregulated hydrangenol-induced HO-1 expression, indicating that hydrangenol-induced Nrf2 is an upstream regulator of HO-1. Taken together, these data suggest that hydrangenol attenuates NO production and iNOS expression in LPS-stimulated BV2 microglial cells by inhibiting NF-κB activation and by stimulating the Nrf2-mediated HO-1 signaling pathway. Therefore, hydrangenol is a promising therapeutic agent for treatment of LPS-mediated inflammatory diseases.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Hydrangeaceae/inmunología , Inflamación/tratamiento farmacológico , Isocumarinas/farmacología , Proteínas de la Membrana/metabolismo , Microglía/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Animales , Línea Celular , Hemo-Oxigenasa 1/genética , Lipopolisacáridos/inmunología , Proteínas de la Membrana/genética , Ratones , Microglía/inmunología , Factor 2 Relacionado con NF-E2/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos
16.
BMB Rep ; 48(10): 559-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25739392

RESUMEN

We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.


Asunto(s)
Metaloproteinasa 9 de la Matriz/biosíntesis , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Xantonas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
17.
Int Immunopharmacol ; 24(1): 14-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25445966

RESUMEN

Microglia are main immune cells to exacerbate neural disorders in persistent overactivating. Therefore, it is a good strategy to regulate microglia for the treatment of neural disorders. In the present study, we isolated and characterized a novel compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton (5-DRL) from Clematis mandshurica, and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-treated BV2 microglial cells. 5-DRL inhibited the expression of LPS-stimulated proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), as well as their regulatory genes inducible NO syntheses (iNOS) and cyclooxygenase-2 (COX-2). 5-DRL also downregulated the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of the nuclear translocation of the NF-κB subunits, p65 and p50. Consistent with the inhibition of iNOS and COX-2 via NF-κB activity with 5-DRL, an inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), also led to the suppression of LPS-induced iNOS and COX-2 expression. Additionally, 5-DRL corresponding with antioxidants, N-acetylcysteine (NAC) and glutathione (GSH), remarkably inhibited reactive oxygen species (ROS) generation. Both NAC and GSH, thus attenuated the expression of iNOS and COX-2 by suppressing NF-κB activation, indicating that 5-DRL suppresses LPS-induced iNOS and COX-2 expression through downregulation of the ROS-dependent NF-κB signaling pathway. The present study also indicated that 5-DRL suppresses NO and PGE2 production by inducing heme oxygenase-1 (HO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, the present data indicate that 5-DRL attenuates the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting ROS-dependent NF-κB activation and stimulating the Nrf2/HO-1 signal pathway. These data may be implicated in the application of 5-DRL in LPS-stimulated inflammatory disease.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Clematis , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fitoterapia , Acetilcisteína/farmacología , Animales , Línea Celular Transformada , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Lactonas/química , Lactonas/farmacología , Lipopolisacáridos/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microglía/inmunología , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Raíces de Plantas , Prolina/análogos & derivados , Prolina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ribosa/análogos & derivados , Ribosa/química , Ribosa/farmacología , Transducción de Señal/efectos de los fármacos , Tiocarbamatos/farmacología
18.
Nutr Res ; 34(12): 1111-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25454762

RESUMEN

Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway.


Asunto(s)
Dinoprostona/biosíntesis , Inflamación/metabolismo , Lithospermum/química , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Naftoquinonas/farmacología , Óxido Nítrico/biosíntesis , Antioxidantes/farmacología , Línea Celular , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microglía/metabolismo , Naftoquinonas/aislamiento & purificación , Naftoquinonas/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirrolidinas/farmacología , Transducción de Señal , Tiocarbamatos/farmacología
19.
Environ Toxicol Pharmacol ; 38(2): 502-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25168152

RESUMEN

Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Próstata/metabolismo , Tiazepinas/farmacología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Fosforilación , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Neoplasias de la Vejiga Urinaria/patología
20.
Cell Immunol ; 290(1): 21-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859013

RESUMEN

α-Viniferin is an oligostilbene of trimeric resveratrol and has anticancer activity; however, the molecular mechanism underlying the anti-inflammatory effects of α-viniferin has not been completely elucidated thus far. Therefore, we determined the mechanism by which α-viniferin regulates lipopolysaccharide (LPS)-induced expression of proinflammatory mediators in BV2 microglial cells. Treatment with α-viniferin isolated from Clematis mandshurica decreased LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). α-Viniferin also downregulated the LPS-induced expression of proinflammatory genes such as iNOS and COX-2 by suppressing the activity of nuclear factor kappa B (NF-κB) via dephosphorylation of Akt/PI3K. Treatment with a specific NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), indirectly showed that NF-κB is a crucial transcription factor for expression of these genes in the early stage of inflammation. Additionally, our results indicated that α-viniferin suppresses NO and PGE2 production in the late stage of inflammation through induction of heme oxygenase-1 (HO-1) regulated by nuclear factor erythroid 2-related factor (Nrf2). Taken together, our data indicate that α-viniferin suppresses the expression of proinflammatory genes iNOS and COX-2 in the early stage of inflammation by inhibiting the Akt/PI3K-dependent NF-κB activation and inhibits the production of proinflammatory mediators NO and PGE2 in the late stage by stimulating Nrf2-mediated HO-1 signaling pathway in LPS-stimulated BV2 microglial cells. These results suggest that α-viniferin may be a potential candidate to regulate LPS-induced inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Benzofuranos/farmacología , Ciclooxigenasa 2/biosíntesis , Microglía/inmunología , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Animales , Línea Celular , Clematis , Dinoprostona/biosíntesis , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/inmunología , Mediadores de Inflamación , Lipopolisacáridos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/inmunología , Ratones , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Óxido Nítrico/biosíntesis , Fosfatidilinositol 3-Quinasas/inmunología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Extractos Vegetales , Raíces de Plantas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/inmunología , Pirrolidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Tiocarbamatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA