Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858942

RESUMEN

This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes.

2.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669359

RESUMEN

In this paper, we present a novel 2D⁻3D pedestrian tracker designed for applications in autonomous vehicles. The system operates on a tracking by detection principle and can track multiple pedestrians in complex urban traffic situations. By using a behavioral motion model and a non-parametric distribution as state model, we are able to accurately track unpredictable pedestrian motion in the presence of heavy occlusion. Tracking is performed independently, on the image and ground plane, in global, motion compensated coordinates. We employ Camera and LiDAR data fusion to solve the association problem where the optimal solution is found by matching 2D and 3D detections to tracks using a joint log-likelihood observation model. Each 2D⁻3D particle filter then updates their state from associated observations and a behavioral motion model. Each particle moves independently following the pedestrian motion parameters which we learned offline from an annotated training dataset. Temporal stability of the state variables is achieved by modeling each track as a Markov Decision Process with probabilistic state transition properties. A novel track management system then handles high level actions such as track creation, deletion and interaction. Using a probabilistic track score the track manager can cull false and ambiguous detections while updating tracks with detections from actual pedestrians. Our system is implemented on a GPU and exploits the massively parallelizable nature of particle filters. Due to the Markovian nature of our track representation, the system achieves real-time performance operating with a minimal memory footprint. Exhaustive and independent evaluation of our tracker was performed by the KITTI benchmark server, where it was tested against a wide variety of unknown pedestrian tracking situations. On this realistic benchmark, we outperform all published pedestrian trackers in a multitude of tracking metrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...