Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(12): e84425, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376808

RESUMEN

MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.


Asunto(s)
Enfermedades de la Córnea/genética , Enfermedades de la Córnea/metabolismo , Complicaciones de la Diabetes/metabolismo , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Cicatrización de Heridas/genética , Análisis de Varianza , Western Blotting , Enfermedades de la Córnea/etiología , Complicaciones de la Diabetes/genética , Regulación de la Expresión Génica/fisiología , Humanos , Inmunohistoquímica , Hibridación in Situ , MicroARNs/genética , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Cicatrización de Heridas/fisiología
2.
PLoS One ; 8(11): e79632, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236148

RESUMEN

Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize decellularized amniotic membrane preparations for expansion of limbal stem cells in vitro before transplantation to patients.


Asunto(s)
Amnios/citología , Técnicas de Cultivo de Célula , Separación Celular/métodos , Amnios/metabolismo , Biomarcadores , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Humanos
3.
Mol Vis ; 16: 630-8, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20700369

RESUMEN

PURPOSE: The family of natriuretic peptides (NPs); atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) as well as three associated receptors (NPRs); natriuretic peptide receptor A (NPR-A), natriuretic peptide receptor B (NPR-B), and natriuretic peptide receptor C (NPR-C) has never been documented in human lens epithelial cells. The study described herein was designed to demonstrate both expression and functionality of components of the natriuretic peptides and natriuretic peptide receptors in the human lens epithelial cell line, HLE-B3 and in normal human lens epithelial cell cultures (nHLE). METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR) along with confirmation by DNA sequencing and real-time quantitative RT-PCR was used to identify and demonstrate expression of mRNA for the natriuretic peptide family. Authentication of protein expression of the natriuretic peptide receptors was determined by using formaldehyde-fixed, Saponin-permeabilized cells (HLE-B3) or methanol:acetone-fixed and permeabilized cells (nHLE) using conventional immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine cyclic GMP (cGMP) activity as stimulated by exogenous addition of natriuretic peptides. RESULTS: Using RT-PCR with confirmation by DNA sequencing and real-time quantitative RT-PCR, HLE-B3 cells were shown to express mRNA for ANP, BNP, and CNP along with their associated receptors. Conventional immunofluorescence on the permeabilized cells confirmed positive diffuse staining indicating the presence of the three natriuretic peptide receptors in both HLE-B3 and nHLE cells. All three natriuretic peptides educe a cGMP response in the rank order CNP>>ANP approximately BNP indicating that the natriuretic peptide family is functional in HLE-B3 cells. CONCLUSIONS: The data indicates that ANP, BNP, and CNP and natriuretic peptide receptor transcripts are expressed and are functional in human lens epithelial cells. The cellular expression of NPs and NPRs, as well as the demonstration that all three NPs activate guanylyl cyclase suggests a potential role in maintaining lens epithelial cell homeostasis.


Asunto(s)
Células Epiteliales/metabolismo , Cristalino/citología , Péptidos Natriuréticos/metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Bioensayo , Línea Celular , GMP Cíclico/biosíntesis , Células Epiteliales/enzimología , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/metabolismo , Péptidos Natriuréticos/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Receptores Acoplados a la Guanilato-Ciclasa/genética
4.
Mol Vis ; 16: 1241-52, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20664698

RESUMEN

PURPOSE: To demonstrate the presence of natriuretic peptide receptors (NPRs) in primary human corneal epithelial cells (p-CEPI), SV40-immortalized CEPI cells (CEPI-17-CL4) and in human corneal epithelium, and to define the pharmacology of natriuretic peptide (NP)-induced cGMP accumulation. METHODS: NPR presence was shown by RT-PCR, western blot analysis, and indirect immunofluoresence. cGMP accumulation was determined using an enzyme immunoassay. RESULTS: p-CEPI and CEPI-17-CL4 cells expressed mRNAs for NPR-A and NPR-B. Proteins for both NPRs were present in these cells and in human corneal epithelium. C-type NP (CNP), atrial NP (ANP) and brain NP (BNP) stimulated the accumulation of cGMP in a concentration-dependent manner in p-CEPI cells (potency; EC(50s)): CNP (1-53 amino acids) EC(50)=24+/-5 nM; CNP fragment (32-53 amino acids) EC(50)=51+/-8 nM; ANP (1-28 amino acids) EC(50)=>10 microM; BNP (32 amino acids) EC(50)>10 microM (all n=3-4). While the NPs were generally more potent in the CEPI-17-CL4 cells than in p-CEPI cells (n=4-9; p<0.01), the rank order of potency of the peptides was essentially the same in both cell types. Effects of CNP fragment in p-CEPI and CEPI-17-CL4 cells were potently blocked by HS-142-1, an NPR-B receptor subtype-selective antagonist (K(i)=0.25+/-0.05 microM in CEPI-CL4-17; K(i)=0.44+/-0.09 microM in p-CEPIs; n=6-7) but less so by an NPR-A receptor antagonist, isatin (K(i)=5.3-7.8 microM, n=3-7). CONCLUSIONS: Our studies showed the presence of NPR-A and NPR-B (mRNAs and protein) in p-CEPI and CEPI-17-CL4 cells and in human corneal epithelial tissue. However, detailed pharmacological studies revealed NPR-B to be the predominant functionally active receptor in both cell-types whose activation leads to the generation of cGMP. While the physiologic role(s) of the NP system in corneal function remains to be delineated, our multidisciplinary findings pave the way for such future investigations.


Asunto(s)
Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , GMP Cíclico/biosíntesis , Epitelio Corneal/metabolismo , Humanos , Inmunohistoquímica , Persona de Mediana Edad , ARN Mensajero/metabolismo , Receptores del Factor Natriurético Atrial/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
5.
Mol Vis ; 14: 2604-15, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19122826

RESUMEN

PURPOSE: 14-3-3 is a highly conserved, ubiquitously expressed family of proteins. At least seven mammalian isoforms (beta, epsilon, gamma, eta, theta, sigma, and zeta) are known. These proteins associate with over 200 different target molecules and activate several downstream signaling cascades involved in the regulation of metabolism, cell cycle, apoptosis, protein trafficking, transcription, stress responses, and malignant transformations. We are interested in the role of these proteins in the mechanisms regulating homeostasis and the pathologies of the human ocular surface. Therefore, our purpose is to determine the expression of the 14-3-3 proteins in the human cornea, the conjunctiva, and the primary cells comprising these tissues. METHODS: Using immunofluorescence, we determined the expression of 14-3-3 beta, epsilon, gamma, eta, theta, sigma, and zeta in paraffin sections of the human cornea and conjunctiva. Using indirect immunofluorescence and western blot analysis, we also determined the expression of these isoforms in primary corneal epithelial cells, keratocytes, endothelial cells, and primary conjunctival epithelial cells. The expressions of these isoforms in primary epithelial and endothelial cells were compared with the same expressions in several corneal cell lines. Western blot analysis was used to determine the presence of 14-3-3 isoforms in the culture medium from corneal epithelial cells, cell lines, and the tear fluid. RESULTS: All the 14-3-3 isoforms were expressed in the corneal and conjunctival epithelia as well as primary epithelial cells and cell lines. Expression of 14-3-3 sigma was confined to epithelial cells and was secreted into the culture medium of primary cells and cell lines. We also report for the first time that two of the secreted isoforms, 14-3-3 gamma and zeta, are also present in the human tear fluid. CONCLUSIONS: We have determined that all the mammalian 14-3-3 isoforms are expressed in the human cornea, conjunctiva, and the component cells and that the 14-3-3 sigma isoform was found to be epithelial cell specific. We propose that the intracellular and extracellular presence of 14-3-3 sigma suggest its involvement in the epithelia specific signaling pathways.


Asunto(s)
Proteínas 14-3-3/metabolismo , Ojo/citología , Ojo/metabolismo , Western Blotting , Extractos Celulares , Células Cultivadas , Conjuntiva/citología , Conjuntiva/metabolismo , Córnea/citología , Córnea/metabolismo , Medios de Cultivo Condicionados , Células Epiteliales/citología , Células Epiteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Isoformas de Proteínas/metabolismo , Lágrimas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...