Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 30(8): 1253-1263, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184564

RESUMEN

Callus formation induced by auxin accumulation is considered the first step of in vitro plant regeneration. In Arabidopsis, degradation of the Aux/IAA protein, IAA14, in response to auxin signaling, which activates the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 along with a series of downstream transcription factors, also plays a critical role in this process. However, the specific mechanism by which auxin regulates callus formation remains unclear. By screening mutant library in the solitary root 1 (iaa14/slr) Arabidopsis background we obtained the callus formation related 2 (cfr2) mutant. The cfr2 mutant exhibited a stronger capacity for callus formation, as well as lateral root and adventitious root regeneration from leaf explants than wild type (WT) seedlings, but did not recover gravitropism capability. The auxin signal in cfr2 was significantly enhanced, and the expression of some downstream transcription factors was increased. Map-based cloning, whole genome resequencing, and phenotypic complementation experiments showed that the phenotypes observed in the cfr2 mutant were caused by a point mutation in the IAA14 promoter region. This mutation, which is predicted to disrupt the binding of LBD16, LBD19, and LBD30 to the IAA14 promoter, changed the expression pattern of IAA14 in cfr2. Taken together, our results identified a new mutation in the IAA14 promoter region, which affects the expression pattern of IAA14 and in turn its ability to control plant regeneration. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01493-y.

2.
Microorganisms ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674758

RESUMEN

The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.

3.
Front Genet ; 15: 1358134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476402

RESUMEN

Passion fruit is widely cultivated in tropical, subtropical regions of the world. The attack of bacterial and fungal diseases, and environmental factors heavily affect the yield and productivity of the passion fruit. The CC-NBS-LRR (CNL) gene family being a subclass of R-genes protects the plant against the attack of pathogens and plays a major role in effector-triggered immunity (ETI). However, no information is available regarding this gene family in passion fruit. To address the underlying problem a total of 25 and 21 CNL genes have been identified in the genome of purple (Passiflora edulis Sims.) and yellow (Passiflora edulis f. flavicarpa) passion fruit respectively. Phylogenetic tree was divided into four groups with PeCNLs present in 3 groups only. Gene structure analysis revealed that number of exons ranged from 1 to 9 with 1 being most common. Most of the PeCNL genes were clustered at the chromosome 3 and underwent strong purifying selection, expanded through segmental (17 gene pairs) and tandem duplications (17 gene pairs). PeCNL genes contained cis-elements involved in plant growth, hormones, and stress response. Transcriptome data indicated that PeCNL3, PeCNL13, and PeCNL14 were found to be differentially expressed under Cucumber mosaic virus and cold stress. Three genes were validated to be multi-stress responsive by applying Random Forest model of machine learning. To comprehend the biological functions of PeCNL proteins, their 3D structure and gene ontology (GO) enrichment analysis were done. Our research analyzed the CNL gene family in passion fruit to understand stress regulation and improve resilience. This study lays the groundwork for future investigations aimed at enhancing the genetic composition of passion fruit to ensure robust growth and productivity in challenging environments.

4.
Front Plant Sci ; 14: 1147946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025151

RESUMEN

Yellowhorn (Xanthoceras sorbifolia) is a species of deciduous tree that is native to Northern and Central China, including Loess Plateau. The yellowhorn tree is a hardy plant, tolerating a wide range of growing conditions, and is often grown for ornamental purposes in parks, gardens, and other landscaped areas. The seeds of yellowhorn are edible and contain rich oil and fatty acid contents, making it an ideal plant for oil production. However, the mechanism of its ability to adapt to extreme environments and the genetic basis of oil synthesis remains to be elucidated. In this study, we reported a high-quality and near gap-less yellowhorn genome assembly, containing the highest genome continuity with a contig N50 of 32.5 Mb. Comparative genomics analysis showed that 1,237 and 231 gene families under expansion and the yellowhorn-specific gene family NB-ARC were enriched in photosynthesis and root cap development, which may contribute to the environmental adaption and abiotic stress resistance of yellowhorn. A 3-ketoacyl-CoA thiolase (KAT) gene (Xso_LG02_00600) was identified under positive selection, which may be associated with variations of seed oil content among different yellowhorn cultivars. This study provided insights into environmental adaptation and seed oil content variations of yellowhorn to accelerate its genetic improvement.

5.
Front Microbiol ; 13: 1098723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713214

RESUMEN

Degradation of crop straw in natural environment has been a bottleneck. There has been a recent increase in the exploration of cold-adapted microorganisms as they can solve the problem of corn straw degradation under low temperatures and offer new alternatives for the sustainable development of agriculture. The study was conducted in low-temperature (10°C) and high-efficiency cellulose-degrading bacteria were screened using carboxymethyl cellulose (CMC) selection medium and subjected to genome sequencing by the third-generation Pacbio Sequl and the second-generation Illumina Novaseq platform, and their cellulase activity was detected by 3,5-dinitrosalicylic acid (DNS) method. The results showed that the low-temperature (10°C) and high-efficiency cellulose-degrading bacterium Bacillus subtilis K1 was 4,060,823 bp in genome size, containing 4,213 genes, with 3,665, 3,656, 2,755, 3,240, 1,261, 3,336 and 4,003 genes annotated in the non-redundant protein sequence database (NR), Pfam, clusters of orthologous groups of proteins (COGs), Genome Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Annotation databases, respectively. In addition, a large number of lignocellulose degradation-related genes were annotated in the genome. The cellulose activity of B. subtilis K1 was higher, exhibiting the highest activity of endo-ß-glucanase (24.69 U/ml), exo-ß-glucanase (1.72 U/ml) and ß-glucosaccharase (1.14 U/ml). It was found that through adding cold-adapted cellulose-degrading bacteriaK1 in the corn straw composting under 6°C (ambient temperature), the average temperature of straw composting was 58.7°C, and higher 86.7% as compared to control. The HA/FA was higher 94.02% than the control and the lignocellulose degradation rate was lower 18.01-41.39% than the control. The results provide a theoretical basis for clarifying the degradation potential of cold-adapted cellulose-degrading bacteria and improving the cellulose degradation efficiency.

6.
Physiol Mol Biol Plants ; 27(9): 1997-2007, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34629774

RESUMEN

Apple is considered the most commonly grown fruit crop in temperate regions that brings great economic profits to fruit growers. Dwarfing rootstocks have been extensively used in apple breeding as well as commercial orchards, but the molecular and genetic basis of scion dwarfing and other morphological traits induced by them is still unclear. At present, we report a genetic map of Malusdomestica × Malus baccata with high density. The F1 population was sequenced by a specific length amplified fragment (SLAF). In the genetic map, 5064 SLAF markers spanning 17 linkage groups (LG) were included. Dwarf-related and other phenotypic traits of the scion were evaluated over a 3-year growth period. Based on quantitative trait loci (QTL) evaluation of plant height and trunk diameter, two QTL clusters were found on LG 11, which exhibited remarkable influences on dwarfing of the scion. In this analysis, QTL DW2, which was previously reported as a locus that controls dwarfing, was confirmed. Moreover, three novel QTLs for total flower number and branching flower number were detected on LG2 and LG4, exhibited the phenotypic variation that has been explained by QTL ranging from 8.80% to 34.80%. The findings of the present study are helpful to find scion dwarfing and other phenotypes induced by rootstock in the apple. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01069-0.

7.
Physiol Mol Biol Plants ; 27(1): 69-80, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33627963

RESUMEN

Pear (Pyrus spp.) belongs to the genus Pyrus, in the family Rosaceae. Some varieties of pear fruit exhibit bulged surface, which seriously affects the quality and commodity value of the pear fruit. In this study, we performed anatomical, physiological, and transcriptomic analysis to explore the mechanism of paclobutrazol (PBZ) on the bulged surface of pear fruit. The vascular bundles of flesh were more evenly distributed, and the fruit cells were more compactly arranged and smaller in size treated with PBZ. However, the auxin (IAA) content of flesh was decreased in the treated group. Furthermore, the GO and KEGG analysis of differentially expressed genes (DEGs) showed that auxin, phenylpropanoid metabolic pathways, and transcriptional factor genes were significantly enriched on the relieved bulged surface of pear fruit. And it was analyzed that some genes contained auxin responded cis-elements from the selected DEGs in the promoter region. We conclude that PBZ plays a negative role in cell division, cell elongation, and vascular bundle development on the bulged surface of pear fruit through the involvement of auxin-related genes. This study will provide a theoretical basis for the regulation of the bulged surface of pear fruit by a growth retardant agent. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12298-021-00929-z) contains supplementary material, which is available to authorized users.

8.
Physiol Mol Biol Plants ; 26(10): 2085-2094, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33088052

RESUMEN

OVATE family proteins (OFPs) are the plant-specific transcription factors, and have significant functions in regulating plant growth, development and resistance. The OFP genes have been investigated in several plants, but they still lack a systematic analysis of OFP genes in Chinese pear and some other five Rosaceae genomes. Here, 28 PbrOFPs were identified within Chinese pear and compared them with those of other five Rosaceae genomes. Evolutionary tree revealed that all OFP genes from six Rosaceae genomes were divided into eight groups. Seventeen conserved microsynteny regions were detected in Chinese pear genome, suggested that these PbrOFP genes might be considered to have originated from the large-scale duplication events., indicating these PbrOFP genes might contain specialized regulatory mechanisms in these tissues, such as flower, ovary and fruit. Remarkably, two PbrOFP genes (Pbr010426.1 and Pbr010427.1) were up-regulated under Venturia nashicola treatment, and five PbrOFP genes were up-regulated under PEG treatment, suggesting that these genes might play crucial roles in defence to environmental stresses. Our data presented a systematic analysis and might aid in the selection of appropriate PbrOFPs for further functional studies in Chinese pear, especially in response to the mechanism of biotic and abiotic stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA