Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Mol Biosci ; 11: 1423594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894712

RESUMEN

p53 deficiency plays a crucial role in chemotherapy resistance through various biological events, including posttranslational modifications (PTMs). Recently, lysine crotonylation (Kcr) has been shown to play a vital role in cancer progression. However, the global p53-regulated crotonylome and the function of these altered Kcr proteins after p53 deficiency remain unclear. In this study, we used a SILAC-based quantitative crotonylome to identify 3,520 Kcr in 1924 crotonylated proteins in response to p53 knockout. We found that increased crotonylation of RRM2 at K283 (RRM2K283Cr) in the presence of p53 deficiency promoted HCT116 cell resistance to cisplatin. We discovered that SIRT7 could be the decrotonylase of RRM2 and was downregulated after p53 knockout, resulting in increased RRM2K283Cr. Mechanistically, p53 deficiency inhibited cell apoptosis by upregulating RRM2 protein expression and RRM2K283Cr-mediated cleaved-PARP1 and cleaved-caspase3 expression, and SIRT7 was downregulated to upregulate crotonylation of RRM2 upon p53 deficiency. In conclusion, our results indicated that p53 deficiency plays a malignant role in colon cancer resistance to cisplatin therapy by regulating RRM2 protein and RRM2K283Cr expression. Our findings provide a novel therapeutic target against p53-deficient cancer.

2.
Inorg Chem ; 63(17): 7966-7972, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38620044

RESUMEN

Hybrid ferroelastic crystals have emerged as a hot research topic in recent years owing to their prospective applications in piezoelectric sensors, mechanical switches, and optoelectronic devices. Nevertheless, most of the documented materials exhibit one-step or two-step ferroelastic phase transition(s), and those with multistep ferroelastic transitions are extremely scarce. We present a new hexagonal molecular perovskite based on a fluoro-substituted flexible cyclic ammonium cation, (1-fluoromethyl-1-methylpyrrolidine)[CdCl3] (1), undergoing unusual three-step ferroelastic phase transitions from hexagonal paraelastic phase to orthorhombic, monoclinic, and triclinic ferroelastic phases at 388, 376, and 311 K, respectively, with Aizu notation of 6/mmmFmmm, mmmF2/m, and 2/mF-1, featuring spontaneous strain of 0.002, 0.023, and 0.110, respectively. Furthermore, variable-temperature single-crystal diffraction reveals that the phase-transition mechanism in 1 principally originates from intriguing dynamic change of organic cations and synchronous displacement of inorganic chains. This scarce instance of multistep hybrid ferroelastic provides important clues for finding advanced ferroelastic materials.

4.
Materials (Basel) ; 17(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473602

RESUMEN

External prestressing is widely employed in structural strengthening engineering due to its numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer (FRP) bars as external prestressing materials to strengthen one-way concrete slabs. Five one-way concrete slabs were strengthened with externally prestressed FRP bars with different prestress levels and different amounts of FRP bars, while one non-strengthened slab was used for comparison. The effects of strengthening on the flexural behavior, specifically the cracking load, ultimate load, stiffness and failure mode, were analyzed systematically. Moreover, the ductility and cost-benefit optimizing properties of the reinforcing design were discussed. The results show that external prestressed FRP bars significantly improve the cracking load, ultimate load and stiffness of one-way concrete slabs. The absence of a bond between the concrete and FRP bars overcomes the brittleness of the FRP bars, while the strengthened slabs exhibit satisfactory ductility and a higher post-yield stiffness and bearing capacity. Additionally, the cost/benefit ratio is optimized by increasing the prestress level, while a higher number of prestressed FRP bars is beneficial to ductility. Finally, a method for calculating the stress in prestressed FRP bars at ultimate loads was proposed. Irrespective of the prestressing material, this method is applicable to both strengthened beams and one-way slabs.

5.
Tissue Eng Regen Med ; 21(5): 749-759, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38466363

RESUMEN

BACKGROUND: The derivation of salivary gland (SG) progenitors from pluripotent stem cells (PSCs) presents significant potential for developmental biology and regenerative medicine. However, the existing protocols for inducing SG include limited factors, making it challenging to mimic the in vivo microenvironment of embryonic SGs. METHODS: We reported a cocktail factor approach to promote the differentiation of mouse embryonic stem cell (mESC)-derived oral epithelium (OE) into SG progenitors through a three-dimensional co-culture method. Upon confirming that the embryonic SG can promote the differentiation of mESC-derived OE, we performed RNA sequence analysis to identify factors involved in the differentiation of SG progenitors. RESULTS: Our findings highlight several efficient pathways related to SG development, with frequent appearances of four factors: IFN-γ, TGF-ß2, EGF, and IGF-1. The combined treatment using these cocktail factors increased the expression of key SG progenitor markers, including Sox9, Sox10, Krt5, and Krt14. However, absence of any one of these cocktail factors did not facilitate differentiation. Notably, aggregates treated with the cocktail factor formed SG epithelial-like structures and pre-bud-like structures on the surface. CONCLUSION: In conclusion, this study offers a novel approach to developing a differentiation protocol that closely mimics the in vivo microenvironment of embryonic SGs. This provides a foundation for generating PSC-derived organoids with near-physiological cell behaviors and structures.


Asunto(s)
Diferenciación Celular , Técnicas de Cocultivo , Glándulas Salivales , Animales , Ratones , Técnicas de Cocultivo/métodos , Glándulas Salivales/citología , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre/citología , Células Madre/metabolismo
6.
Brain Res ; 1831: 148822, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408558

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, holds potential for applications in the treatment of Alzheimer's disease (AD). This study aims to compare the therapeutic effects of rTMS at different frequencies on Alzheimer's disease and explore the alterations in neuronal electrophysiological properties throughout this process. APP/PS1 AD mice were subjected to two rTMS treatments at 0.5 Hz and 20 Hz, followed by assessments of therapeutic outcomes through the Novel Object Recognition (NOR) and Morris Water Maze (MWM) tests. Following this, whole-cell patch-clamp techniques were used to record action potential, voltage-gated sodium channel currents, and voltage-gated potassium channel currents in dentate gyrus granule neurons. The results show that AD mice exhibit significant cognitive decline compared to normal mice, along with a pronounced reduction in neuronal excitability and ion channel activity. Both frequencies of rTMS treatment partially reversed these changes, demonstrating similar therapeutic efficacy. Furthermore, the investigation indicates that low-frequency magnetic stimulation inhibited the concentrated firing of early action potentials in AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/terapia , Estimulación Magnética Transcraneal/métodos , Neuronas/fisiología , Hipocampo , Potenciales de Acción/fisiología , Modelos Animales de Enfermedad
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1690-1700, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38071047

RESUMEN

OBJECTIVE: To investigate the correlation between 18Fluoro-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic parameters and peripheral blood circulating tumour DNA (ctDNA) in patients with diffuse large B-cell lymphoma (DLBCL), and the prognostic value of these two types of parameters in predicting progression-free survival (PFS). METHODS: Clinical, PET/CT and ctDNA data of DLBCL patients who underwent peripheral blood ctDNA testing and corresponding PET/CT scans during the same period were retrospectively analyzed. At the time of ctDNA sampling and PET scan, patients were divided into baseline and relapsed/refractory (R/R) groups according to different disease conditions. CtDNA mutation abundance was expressed as variant allele frequency (VAF), including maximum VAF (maxVAF) and mean VAF (meanVAF). Total metabolic tumour volume (TMTV) and total lesion glycolysis (TLG) were obtained by the 41% maximum normalized uptake value method, and the distance between the two farthest lesions (Dmax) was used to assess the correlation between PET parameters and ctDNA mutation abundance using Spearman correlation analysis. The receiver operating characteristic (ROC) curves were used to obtain the optical cut-off values of those parameters in predicting PFS in the baseline and R/R groups, respectively. Survival curves were outlined using the Kaplan-Meier method and log-rank test was performed to compare survival differences. RESULTS: A total of 67 DLBCL patients ï¼»28 males and 39 females, median age 56.0(46.0, 67.0) yearsï¼½ were included and divided into baseline group (29 cases) and R/R group (38 cases). Among these PET parameters, baseline TMTV, TLG, and Dmax were significantly correlated with baseline ctDNA mutation abundance, except for maximum standardized uptake value (SUVmax) (maxVAF vs TMTV: r=0.711; maxVAF vs TLG: r=0.709; maxVAF vs Dmax: r=0.672; meanVAF vs TMTV: r=0.682; meanVAF vs TLG: r=0.677; meanVAF vs Dmax: r=0.646). While in all patients, these correlations became weaker significantly. Among R/R patients, only TMTV had a weak correlation with meanVAF (r=0.376). ROC analysis showed that, the specificity of TMTV, TLG and Dmax in predicting PFS was better than mutation abundance, while the sensitivity of ctDNA mutation abundance was better. Except R/R patients, TMTV, TLG, Dmax, and VAF were significantly different at normal/elevated lactate dehydrogenase in baseline group and all patients (all P<0.05). Survival curves indicated that high TMTV (>109.5 cm3), high TLG (>2 141.3), high Dmax (>33.1 cm) and high VAF (maxVAF>7.74%, meanVAF>4.39%) were risk factors for poor PFS in baseline patients, while only high VAF in R/R patients (both maxVAF and meanVAF >0.61%) was a risk factor for PFS. CONCLUSION: PET-derived parameters correlate well with ctDNA mutation abundance, especially in baseline patients. VAF of ctDNA predicts PFS more sensitively than PET metabolic parameters, while PET metabolic tumour burden with better specificity. TMTV, TLG and VAF all have good prognostic value for PFS. PET/CT combined with ctDNA has potential for further studies in prognostic assessment and personalized treatment.


Asunto(s)
ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Masculino , Femenino , Humanos , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , ADN Tumoral Circulante/genética , Estudios Retrospectivos , Tomografía de Emisión de Positrones , Análisis de Supervivencia , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Pronóstico
8.
Oral Dis ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37849447

RESUMEN

OBJECTIVES: Confirm that stem cells from human exfoliated deciduous teeth-derived exosomes (SHED-exos) can limit inflammation-triggered epithelial cell apoptosis and explore the molecular mechanism. METHODS: SHED-exos were injected into the submandibular glands (SMGs) of non-obese diabetic (NOD) mice, an animal model of Sjögren's syndrome (SS). Cell death was evaluated by western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. RESULTS: SHED-exos treatment promoted the saliva flow rates of NOD mice, accompanied by decreased cleaved caspase-3 levels and apoptotic cell numbers in SMGs. SHED-exos inhibited autophagy, pyroptosis, NETosis, ferroptosis, necroptosis and oxeiptosis marker expression in SS-damaged glands. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis of exosomal miRNAs suggested that the rat sarcoma virus (RAS)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway might play an important role. In vivo, the expression of Kirsten RAS, Harvey RAS, MEK1/2 and p-ERK1/2 was upregulated in SMGs, and this change was blocked by SHED-exos treatment. In vitro, SHED-exos suppressed p-ERK1/2 activation and increased cleaved caspase-3 and apoptotic cell numbers, which were induced by IFN-γ. CONCLUSION: SHED-exos suppress epithelial cell death, which is responsible for promoting salivary secretion. SHED-exos inhibited inflammation-triggered epithelial cell apoptosis by suppressing p-ERK1/2 activation, which is involved in these effects.

9.
Dalton Trans ; 52(33): 11518-11525, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37539870

RESUMEN

Organic-inorganic hybrid metal halides for high-temperature phase transition have become increasingly popular owing to their wide operating temperature range in practical applications, e.g., energy storage, permittivity switches and opto-electronic devices. This paper describes the subtle assembly of two new hybrid perovskite crystals, [Cl-C6H4-(CH2)2NH3]2CdX4 (X = Br 1; Cl 2), undergoing high-T reversible phase transformations around 335 K/356 K. Differential scanning calorimetry (DSC), differential thermal analysis (DTA) and VT PXRD tests uncover their reversible first-order phase transition behaviors. Furthermore, the compounds exhibit switchable dielectricity near T, making them potential dielectric switching materials. Hirshfeld surface analysis well discloses a distinct difference in hydrogen-bonding interaction between 1 and 2. UV spectra and computational analysis demonstrate that the compounds are a type of direct-band-gap semiconductor. This research will contribute an effective approach to the structure and development of multifunctional molecular hybrid crystals.

10.
Oral Dis ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125663

RESUMEN

OBJECTIVES: The objective of the study was to evaluate the therapeutic effects of carbon quantum dots (CQDs) in immunomodulation on non-obese diabetic (NOD) mice, as the model for Sjögren's syndrome (SS). METHODS: Carbon quantum dots were generated from Setaria viridis via a hydrothermal process. Their toxic effects were tested by cell viability and blood chemistry analysis, meanwhile therapeutic effects were investigated in NOD mice in the aspects of saliva flow, histology, and immune cell distribution. RESULTS: Carbon quantum dots, with rich surface chemistry and unique optical properties, showed non-cytotoxicity in vitro or no damage in vivo. Intravenously applied CQDs alleviated inflammation in the submandibular glands in NOD mice after 6-week treatments. The inflammatory area index and focus score were significantly decreased in CQD-treated mice. Besides, the levels of anti-SSA and anti-SSB were decreased in the presence of CQDs. The stimulated saliva flow rates and weight of submandibular glands were significantly increased in CQD-treated mice by reducing the apoptosis of cells. The CD3+ and CD4+ T cells distributed around the ducts of submandibular glands were significantly decreased, while the percentage of Foxp3+ cells was higher in CQD-treated mice than that in the control group. CONCLUSIONS: Our findings suggest that CQDs may ameliorate the dysregulated immune processes in NOD mice.

11.
Biomed Pharmacother ; 163: 114865, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187020

RESUMEN

Malignant melanoma is one of the most aggressive and lethal skin cancer. At present, the treatment methods for melanoma have shortcomings. Glucose is the primary energy source of cancer cells. However, it is unclear whether glucose deprivation can be used to treat melanoma. Herein, we first found glucose played an essential role in melanoma proliferation. We then further found a drug combination of niclosamide and quinacrine could inhibit melanoma proliferation and glucose intake. Thirdly, we revealed the mechanism of anti-melanoma effect of the drug combination, which suppressed the Akt pathway. In addition, the first-rate limiting enzyme HK2 of glucose metabolism was inhibited. This work also disclosed that the decrease of HK2 inhibited cyclin D1 by reducing the activity of transcription factor E2F3, which further suppressed the proliferation of melanoma cells. The drug combination treatment also resulted in significant tumor regression in the absence of obvious morphologic changes in primary organ in vivo. In summary, our study demonstrated that the drug combination treatment created glucose deprivation to inactive the Akt/HK2/cyclin D1 axis, thereby inhibited the proliferation of melanoma cells, providing a potential anti-melanoma strategy.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Glucosa/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Niclosamida/farmacología , Niclosamida/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinacrina/farmacología , Transducción de Señal
12.
Chin Med J (Engl) ; 136(21): 2596-2608, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052137

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS. METHODS: SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement. RESULTS: SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3ß (p-GSK-3ß)/GSK-3ß, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3ß/GSK-3ß, and Slug and increased ZO-1 expression. CONCLUSION: Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3ß/Slug pathway-mediated ZO-1 expression.


Asunto(s)
Exosomas , MicroARNs , Síndrome de Sjögren , Xerostomía , Ratones , Animales , Humanos , Síndrome de Sjögren/terapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Uniones Estrechas/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo , Exosomas/metabolismo , Fosfatidilinositol 3-Quinasa , MicroARNs/genética
13.
Cogn Neurodyn ; 17(2): 431-443, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37007191

RESUMEN

This study aims to explore the effects of acute high-frequency repetitive transcranial magnetic stimulation (hf-rTMS) on neuronal excitability of granule cells in the hippocampal dentate gyrus, as well as the underlying intrinsic mediating mechanisms by which rTMS regulates neuronal excitability. First, high-frequency single TMS was used to measure the motor threshold (MT) of mice. Then, rTMS with different intensities of 0 MT (control), 0.8 MT, and 1.2 MT were applied to acute mice brain slices. Next, patch-clamp technique was used to record the resting membrane potential and evoked nerve discharge of granule cells, as well as the voltage-gated sodium current (I Na) of voltage-gated sodium channels (VGSCs), transient outward potassium current (I A) and delayed rectifier potassium current (I K) of voltage-gated potassium channels (Kv). Results showed that acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly activated I Na and inhibited I A and I K compared with control group, due to the changes of dynamic characteristics of VGSCs and Kv. Acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly increased membrane potential and nerve discharge frequency. Therefore, changing dynamic characteristics of VGSCs and Kv, activating I Na and inhibiting I A and I K might be one of the intrinsic mediating mechanisms by which rTMS enhanced the neuronal excitability of granular cells, and this regulatory effect increased with the increase of stimulus intensity.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 8-19, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36854543

RESUMEN

Weightlessness in the space environment affects astronauts' learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.


Asunto(s)
Disfunción Cognitiva , Estimulación Magnética Transcraneal , Animales , Ratones , Suspensión Trasera , Neuronas , Encéfalo
15.
Stem Cell Rev Rep ; 19(2): 430-442, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35948781

RESUMEN

Derivation of salivary gland epithelial progenitors (SGEPs) from human pluripotent stem cells (hPSCs) has great potential in developmental biology and regenerative medicine. At present, no efficient method is available to generate salivary gland cells from hPSCs. Here, we described for the first time a robust protocol for direct differentiation of hPSCs into SGEPs by mimicking retinoic acid and Wnt signaling. These hPSC-derived SGEPs expressed SOX9, KRT5, and KRT19, important progenitor markers of developing salivary glands. CD24 and α-SMA positive cells, capable of restoring the functions of injured salivary glands, were also present in SGEP cultures. Importantly, RNA-sequencing revealed that the SGEPs resembled the transcript profiles of human fetal submandibular glands. Therefore, we provided an efficient protocol to induce hPSCs differentiation into SGEPs. Our study provides a foundation for generating functional hPSCs derived salivary gland acinar cells and three-dimensional organoids, potentially serving as new models for basic study and future translational research.


Asunto(s)
Células Madre Pluripotentes , Vía de Señalización Wnt , Humanos , Diferenciación Celular/genética , Glándulas Salivales , Tretinoina
16.
Stem Cell Res Ther ; 13(1): 368, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902913

RESUMEN

BACKGROUND: Salivary glands produce saliva that play essential roles in digestion and oral health. Derivation of salivary gland organoids from pluripotent stem cells (PSCs) provides a powerful platform to model the organogenesis processes during development. A few studies attempted to differentiate PSCs into salivary gland organoids. However, none of them could recapitulate the morphogenesis of the embryonic salivary glands, and most of the protocols involved complicated manufacturing processes. METHODS: To generate PSC-derived salivary gland placodes, the mouse embryonic stem cells were first differentiated into oral ectoderm by treatment with BMP4 on day 3. Retinoic acid and bFGF were then applied to the cultures from day 4 to day 6, followed by a 4-day treatment of FGF10. The PSC-derived salivary gland placodes on day 10 were transplanted to kidney capsules to determine the regenerative potential. Quantitative reverse transcriptase-polymerase chain reaction, immunofluorescence, and RNA-sequencing were performed to identify the PSC-derived SG placodes. RESULTS: We showed that step-wise treatment of retinoic acid and FGF10 promoted the differentiation of PSCs into salivary gland placodes, which can recapitulate the early morphogenetic events of their fetal counterparts, including the thickening, invagination, and then formed initial buds. The PSC-derived salivary gland placodes also differentiated into developing duct structures and could develop to striated and excretory ducts when transplanted in vivo. CONCLUSIONS: The present study provided an easy and safe method to generate salivary gland placodes from PSCs, which offered possibilities for studying salivary gland development in vitro and developing new cell therapies.


Asunto(s)
Células Madre Pluripotentes , Tretinoina , Animales , Diferenciación Celular , Factor 10 de Crecimiento de Fibroblastos/farmacología , Ratones , Organoides , Glándulas Salivales , Tretinoina/farmacología
17.
PeerJ ; 10: e13360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529491

RESUMEN

MicroRNAs play an important role in myogenic differentiation, they bind to target genes and regulate muscle formation. We previously found that miR-9-5p, which is related to bone formation, was increased over time during the process of myogenic differentiation. However, the mechanism by which miR-9-5p regulates myogenic differentiation remains largely unknown. In the present study, we first examined myotube formation and miR-9-5p, myogenesis-related genes including Dlx3, Myod1, Mef2c, Desmin, MyoG and Myf5 expression under myogenic induction. Then, we detected the expression of myogenic transcription factors after overexpression or knockdown of miR-9-5p or Dlx3 in the mouse premyoblast cell line C2C12 by qPCR, western blot and myotube formation under myogenic induction. A luciferase assay was performed to confirm the regulatory relationships between not only miR-9-5p and Dlx3 but also Dlx3 and its downstream gene, Myf5, which is an essential transcription factor of myogenic differentiation. The results showed that miR-9-5p promoted myogenic differentiation by increasing myogenic transcription factor expression and promoting myotube formation, but Dlx3 exerted the opposite effect. Moreover, the luciferase assay showed that miR-9-5p bound to the 3'UTR of Dlx3 and downregulated Dlx3 expression. Dlx3 in turn suppressed Myf5 expression by binding to the Myf5 promoter, ultimately inhibiting the process of myogenic differentiation. In conclusion, the miR-9-5p/Dlx3/Myf5 axis is a novel pathway for the regulation of myogenic differentiation, and can be a potential target to treat the diseases related to muscle dysfunction.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , Diferenciación Celular/genética , Línea Celular , Factores de Transcripción/genética , Desarrollo de Músculos/genética , Factor 5 Regulador Miogénico/genética
18.
Int J Nanomedicine ; 17: 2301-2318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615541

RESUMEN

Background: Extracellular vesicles (EVs), as a promising platform for drug delivery, have attracted much attention. Degradation and regeneration of EVs maintain their homeostasis in vivo, but this regeneration is missing in the in vitro culture (IVC) system, which is likely to lead to negative effects. It is particularly concerning that most studies involving the addition of EVs in IVC seem to overlook this point. Methods: We used rabbit embryos and oviduct fluid EVs as a model of embryo development to examine the effect of loss or gain of EV functionality in an IVC system. Embryonic development ratios were determined in each group. Malondialdehyde and ammonium ions in the culture medium were measured. RNA-seq, reactive oxygen species (ROS) staining, immunofluorescence of LC3 and H3K36me3, and qPCR of oxidative stress-related genes and autophagy-related genes of blastocysts in the in vivo group, non-EVs group, con-EVs group, and R-EVsM group was implemented. Results: Incubation of embryos with 9.1×1011 EV particles/mL had a positive effect at 48 h and 72 h, which disappeared by 96 h, however. EVs at a concentration of 9.1×1012 particles/mL even showed a negative effect at 96 h. As culture time in the IVC system was increased, the amount of malondialdehyde and ammonium ions in the culture medium was increased, and there was a decrease in embryonic development activity of EVs. Lack of EV renewal in the IVC system impaired embryonic development competence, while replacement of EVs and medium during IVC could sustain embryonic development. Loss or gain of renewal in the IVC system affected EVs' influence on embryo transcriptome, embryonic ROS, autophagy, epigenetic state and apoptosis. Conclusion: Loss of renewal in the IVC system affected EVs' role in embryonic development by causing an imbalance in ROS, autophagy, abnormal H3K36me3 levels and apoptosis, while gain of renewal in the IVC system reduced these adverse effects and ensured the beneficial function of EVs.


Asunto(s)
Compuestos de Amonio , Vesículas Extracelulares , Animales , Desarrollo Embrionario , Vesículas Extracelulares/metabolismo , Femenino , Iones , Malondialdehído/metabolismo , Embarazo , Conejos , Especies Reactivas de Oxígeno/metabolismo
19.
Transl Oncol ; 21: 101425, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35460941

RESUMEN

Malignant melanoma is a highly aggressive, malignant, and drug-resistant tumor. It lacks an efficient treatment approach. In this study, we developed a novel anti-melanoma strategy by using anti-tapeworm drug niclosamide and anti-malarial drug quinacrine, and investigated the molecular mechanism by in vitro and in vivo assays. Meanwhile, other types of tumor cells, immortalized epithelial cells and bone marrow mesenchymal stem cells were used to evaluate the universal role of anti-cancer and safety of the strategy. The results showed, briefly, an exposure to niclosamide and quinacrine led to an increased apoptosis-related protein p53, cleaved caspase-3 and cleaved PARP and autophagy-related protein LC3B expression, and a decreased expression of autophagy-related protein p62, finally leading to cell apoptosis and autophage. After inhibiting autophagy by Baf-A1, flow cytometry and western blot showed that the expression of apoptosis-related proteins was down-regulated and the number of apoptotic cells decreased. Subsequently, in the siRNA-mediated p53 knockdown cells, the expression of apoptosis-related proteins and the number of apoptotic cells were also reduced, while the expression of autophagy-related proteins including LC3B, p62 did not change significantly. To sum up, we developed a new, safe strategy for melanoma treatment by using low doses of niclosamide and quinacrine to treat melanoma; and found a novel mechanism by which the combination application of low doses of niclosamide and quinacrine exerts an efficient anti-melanoma effect through activation of autophagy-mediated p53-dependent apoptosis. The novel strategy was verified to exert a universal anti-cancer role in other types of cancer.

20.
Environ Technol ; 43(21): 3283-3294, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33944689

RESUMEN

In this study, red mud (RM) was modified with titanate coupling agent (triisostearoyl isopropoxy titanate, KR-TTS), and then the modified RM was melted blending with high-density polyethylene (HDPE) to prepare HDPE-based composite. The action mechanism of KR-TTS on the properties of HDPE composites was analysed combining with the movement mode of polyethylene macromolecular chain segments. The entanglement and mechanical interlocking of long alkyl chains of titanate coupling agent and the polyethylene molecular chains occurs in modified RM/HDPE composite, reflected by fracture morphology within tension process. The stronger interface interaction results in a decrease of polyethylene molecular chain segments motion under external loading, externally expressed as higher tensile strength and tensile modulus as well as storage modulus. Meanwhile, KR-TTS imparts modified RM/HDPE composite with higher elongation at break of uniaxial tension and lower damping ratio. The impact strength presents an improvement from 5.62 kJ/m2 of RM/HDPE composite to 6.56 kJ/m2 of modified RM/HDPE composite due to stronger interface strength. And modified RM/HDPE composite appears higher thermal stability, attributed to better particles dispersion and higher interface adhesion. Differential scanning calorimetric analysis shows that with the addition of coupling agent, the melt enthalpy of modified RM/HDPE composite decreases, indicating a decrement in the crystallinity of polyethylene composites (from 70.2% of RM/HDPE to 63.1% of modified RM/HDPE), resulted from the retarded stacking speed of chain segments into the crystal lattice during crystal growth.


Asunto(s)
Polietileno , Polietileno/química , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...