Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Med Chem ; 67(10): 7921-7934, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38713486

RESUMEN

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteína-Arginina N-Metiltransferasas , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Femenino , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico
2.
Nucleic Acids Res ; 52(12): 6811-6829, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676947

RESUMEN

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.


Asunto(s)
Neoplasias de la Mama , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteína-Arginina N-Metiltransferasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , Femenino , Animales , Línea Celular Tumoral , Ciclo Celular/genética , Ratones , Metilación , Arginina/metabolismo , Carcinogénesis/genética , Activación Transcripcional
3.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457049

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165927

RESUMEN

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Transformación Celular Neoplásica , Neoplasias Pulmonares/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
5.
Sci Adv ; 9(35): eadg7053, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656786

RESUMEN

Pattern recognition receptor-mediated innate immunity is critical for host defense against viruses. A growing number of coding and noncoding genes are found to encode microproteins. However, the landscape and functions of microproteins in responsive to virus infection remain uncharacterized. Here, we systematically identified microproteins that are responsive to vesicular stomatitis virus infection. A conserved and endoplasmic reticulum-localized membrane microprotein, MAVI1 (microprotein in antiviral immunity 1), was found to interact with mitochondrion-localized MAVS protein and inhibit MAVS aggregation and type I interferon signaling activation. The importance of MAVI1 was highlighted that viral infection was attenuated and survival rate was increased in Mavi1-knockout mice. A peptide inhibitor targeting the interaction between MAVI1 and MAVS activated the type I interferon signaling to defend viral infection. Our findings uncovered that microproteins play critical roles in regulating antiviral innate immune responses, and targeting microproteins might represent a therapeutic avenue for treating viral infection.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Animales , Ratones , Antivirales , Retículo Endoplásmico , Ratones Noqueados , Mitocondrias , Micropéptidos
6.
Adv Sci (Weinh) ; 10(25): e2206663, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37404090

RESUMEN

Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptores de Estrógenos/uso terapéutico , ARN Largo no Codificante/genética , Línea Celular Tumoral , Estrógenos/uso terapéutico , Resistencia a Antineoplásicos/genética , Carcinogénesis
7.
EMBO J ; 42(10): e112408, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37009655

RESUMEN

The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.


Asunto(s)
Neoplasias de la Mama , ARN Circular , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , ARN Circular/genética , ARN Circular/metabolismo
8.
Mol Cancer ; 21(1): 69, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255921

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common invasive malignancy worldwide with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been reported to be involved in cancer development. However, lncRNAs that are functional in ESCC and the underlying molecular mechanisms remain largely unknown. METHODS: Transcriptomic analysis was performed to identify dysregulated lncRNAs in ESCC tissue samples. The high expression of LINC00680 in ESCC was validated by RT-qPCR, and the oncogenic functions of LINC00680 was investigated by cell proliferation, colony formation, migration and invasion assays in ESCC cells in vitro and xenografts derived from ESCC cells in mice. RNA-seq, competitive endogenous RNA (ceRNA) network analysis, and luciferase reporter assays were carried out to identify LINC00680 target genes and the microRNAs (miRNAs) bound to LINC00680. Antisense oligonucleotides (ASOs) were used for in vivo treatment. RESULTS: Transcriptome profiling revealed that a large number of lncRNAs was dysregulated in ESCC tissues. Notably, LINC00680 was highly expressed, and upregulation of LINC00680 was associated with large tumor size, advanced tumor stage, and poor prognosis. Functionally, knockdown of LINC00680 restrained ESCC cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, LINC00680 was found to act as a ceRNA by sponging miR-423-5p to regulate PAK6 (p21-activated kinase 6) expression in ESCC cells. The cell viability and motility inhibition induced by LINC00680 knockdown was significantly reversed upon PAK6 restoration and miR-423-5p inhibition. Furthermore, ASO targeting LINC00680 substantially suppressed ESCC both in vitro and in vivo. CONCLUSIONS: An oncogenic lncRNA, LINC00680, was identified in ESCC, which functions as a ceRNA by sponging miR-423-5p to promote PAK6 expression and ESCC. LINC00680/miR-423-5p/PAK6 axis may serve as promising diagnostic and prognostic biomarkers and therapeutic targets for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Quinasas p21 Activadas , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
9.
Mol Ther ; 29(10): 3011-3026, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34058385

RESUMEN

Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.


Asunto(s)
Azepinas/administración & dosificación , Neoplasias Encefálicas/terapia , Proteínas de Ciclo Celular/metabolismo , Receptores ErbB/inmunología , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Factores de Transcripción/metabolismo , Triazoles/administración & dosificación , Animales , Azepinas/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Epigénesis Genética/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Metástasis de la Neoplasia , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Theranostics ; 11(4): 1732-1752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33408778

RESUMEN

Estrogen and estrogen receptor (ER)-regulated gene transcriptional events have been well known to be involved in ER-positive breast carcinogenesis. Meanwhile, circular RNAs (circRNAs) are emerging as a new family of functional non-coding RNAs (ncRNAs) with implications in a variety of pathological processes, such as cancer. However, the estrogen-regulated circRNA program and the function of such program remain uncharacterized. Methods: CircRNA sequencing (circRNA-seq) was performed to identify circRNAs induced by estrogen, and cell proliferation, colony formation, wound healing, transwell and tumor xenograft experiments were applied to examine the function of estrogen-induced circRNA, circPGR. RNA sequencing (RNA-seq) and ceRNA network analysis wereperformed to identify circPGR's target genes and the microRNA (miRNA) bound to circPGR. Anti-sense oligonucleotide (ASO) was used to assess circPGR's effects on ER-positive breast cancer cell growth. Results: Genome-wide circRNA profiling by circRNA sequencing (circRNA-seq) revealed that a large number of circRNAs were induced by estrogen, and further functional screening for the several circRNAs originated from PGR revealed that one of them, which we named as circPGR, was required for ER-positive breast cancer cell growth and tumorigenesis. CircPGR was found to be localized in the cytosol of cells and functioned as a competing endogenous RNA (ceRNA) to sponge miR-301a-5p to regulate the expression of multiple cell cycle genes. The clinical relevance of circPGR was underscored by its high and specific expression in ER-positive breast cancer cell lines and clinical breast cancer tissue samples. Accordingly, anti-sense oligonucleotide (ASO) targeting circPGR was proven to be effective in suppressing ER-positive breast cancer cell growth. Conclusions: These findings reveled that, besides the well-known messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and enhancer RNA (eRNA) programs, estrogen also induced a circRNA program, and exemplified by circPGR, these estrogen-induced circRNAs were required for ER-positive breast cancer cell growth, providing a new class of therapeutic targets for ER-positive breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Estrógenos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Circular/genética , Receptores de Progesterona/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Pronóstico , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Clin Transl Immunology ; 9(5): e01135, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32373345

RESUMEN

OBJECTIVES: Triple-negative breast cancer (TNBC) is well known for its strong invasiveness, rapid recurrence and poor prognosis. Immunotherapy, including chimeric antigen receptor-modified T (CAR-T) cells, has emerged as a promising tool to treat TNBC. The identification of a specific target tumor antigen and the design of an effective CAR are among the many challenges of CAR-T therapy. METHODS: We reported that epidermal growth factor receptor (EGFR) is highly expressed in TNBC and consequently designed an optimal third generation of CAR targeting EGFR. The efficacy of primary T lymphocytes infected with EGFR CAR lentivirus (EGFR CAR-T) against TNBC was evaluated both in vitro and in vivo. The signalling pathways activated in tumor and EGFR CAR-T cells were revealed by RNA sequencing analysis. RESULTS: Third-generation EGFR CAR-T cells exerted potent and specific suppression of TNBC cell growth in vitro, whereas limited cytotoxicity was observed towards normal breast epithelial cells or oestrogen receptor-positive breast cancer cells. This capability was further demonstrated in vivo in a xenograft mouse model, with minimal off-tumor cytotoxicity. Mechanistically, in vitro stimulation with TNBC cells induced the expansion of naïve-associated EGFR CAR-T cells and enhanced their persistence. Furthermore, EGFR CAR-T cells activated the interferon γ, granzyme-perforin-PARP and Fas-FADD-caspase signalling pathways in TNBC cells. CONCLUSION: We demonstrate that EGFR is a relevant immunotherapeutic target in TNBC, and EGFR CAR-T exhibits potent and specific antitumor activity against TNBC, suggesting the potential of this third-generation EGFR CAR-T as an immunotherapy tool to treat TNBC in the clinic.

12.
Theranostics ; 10(8): 3451-3473, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32206101

RESUMEN

While protein arginine methyltransferases (PRMTs) and PRMT-catalyzed protein methylation have been well-known to be involved in a myriad of biological processes, their functions and the underlying molecular mechanisms in cancers, particularly in estrogen receptor alpha (ERα)-positive breast cancers, remain incompletely understood. Here we focused on investigating PRMT4 (also called coactivator associated arginine methyltransferase 1, CARM1) in ERα-positive breast cancers due to its high expression and the associated poor prognosis. Methods: ChIP-seq and RNA-seq were employed to identify the chromatin-binding landscape and transcriptional targets of CARM1, respectively, in the presence of estrogen in ERα-positive MCF7 breast cancer cells. High-resolution mass spectrometry analysis of enriched peptides from anti-monomethyl- and anti-asymmetric dimethyl-arginine antibodies in SILAC labeled wild-type and CARM1 knockout cells were performed to globally map CARM1 methylation substrates. Cell viability was measured by MTS and colony formation assay, and cell cycle was measured by FACS analysis. Cell migration and invasion capacities were examined by wound-healing and trans-well assay, respectively. Xenograft assay was used to analyze tumor growth in vivo. Results: CARM1 was found to be predominantly and specifically recruited to ERα-bound active enhancers and essential for the transcriptional activation of cognate estrogen-induced genes in response to estrogen treatment. Global mapping of CARM1 substrates revealed that CARM1 methylated a large cohort of proteins with diverse biological functions, including regulation of intracellular estrogen receptor-mediated signaling, chromatin organization and chromatin remodeling. A large number of CARM1 substrates were found to be exclusively hypermethylated by CARM1 on a cluster of arginine residues. Exemplified by MED12, hypermethylation of these proteins by CARM1 served as a molecular beacon for recruiting coactivator protein, tudor-domain-containing protein 3 (TDRD3), to CARM1-bound active enhancers to activate estrogen/ERα-target genes. In consistent with its critical role in estrogen/ERα-induced gene transcriptional activation, CARM1 was found to promote cell proliferation of ERα-positive breast cancer cells in vitro and tumor growth in mice. Conclusions: our study uncovered a "hypermethylation" strategy utilized by enhancer-bound CARM1 in gene transcriptional regulation, and suggested that CARM1 can server as a therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Arginina/metabolismo , Neoplasias de la Mama/genética , Proliferación Celular , Transformación Celular Neoplásica , Secuenciación de Inmunoprecipitación de Cromatina , Estrógenos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Células MCF-7 , Complejo Mediador/metabolismo , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Proteínas/metabolismo , RNA-Seq , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Asian J Androl ; 22(1): 79-87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31210146

RESUMEN

The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11-13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.


Asunto(s)
Meiosis/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Espermatocitos/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Supervivencia Celular , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Infertilidad Masculina , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión a Fosfato/genética , Recombinasa Rad51/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espermatocitos/citología , Espermatogonias/citología
14.
Front Genet ; 10: 1409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082365

RESUMEN

Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide, and is well known for its strong invasiveness, rapid recurrence, and poor prognosis. Long non-coding RNAs (lncRNAs) have been shown to be involved in the development of various types of cancers, including colorectal cancer. Here, through transcriptomic analysis and functional screening, we reported that lncRNA LUCRC (LncRNA Upregulated in Colorectal Cancer) is highly expressed in colorectal tumor samples and is required for colorectal cancer cell proliferation, migration, and invasion in cultured cells and tumorigenesis in xenografts. LUCRC was found to regulate target gene expression of unfolded protein response (UPR) in endoplasmic reticulum (ER), such as BIP. The clinical significance of LUCRC is underscored by the specific presence of LUCRC in blood plasma of patients with colorectal cancers. These findings revealed a critical regulator of colorectal cancer development, which might serve as a therapeutic target in colorectal cancer.

15.
Mol Cell ; 70(2): 340-357.e8, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29628309

RESUMEN

Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.


Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Mediador/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Activación Transcripcional/efectos de los fármacos
16.
Cell Discov ; 3: 17035, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098080

RESUMEN

Yin Yang 1 (YY1) is a multifunctional DNA-binding transcription factor shown to be critical in a variety of biological processes, and its activity and function have been shown to be regulated by multitude of mechanisms, which include but are not limited to post-translational modifications (PTMs), its associated proteins and cellular localization. YY2, the paralog of YY1 in mouse and human, has been proposed to function redundantly or oppositely in a context-specific manner compared with YY1. Despite its functional importance, how YY2's DNA-binding activity and function are regulated, particularly by PTMs, remains completely unknown. Here we report the first PTM with functional characterization on YY2, namely lysine 247 monomethylation (K247me1), which was found to be dynamically regulated by SET7/9 and LSD1 both in vitro and in cultured cells. Functional study revealed that SET7/9-mediated YY2 methylation regulated its DNA-binding activity in vitro and in association with chromatin examined by chromatin immunoprecipitation coupled with sequencing (ChIP-seq) in cultured cells. Knockout of YY2, SET7/9 or LSD1 by CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9-mediated gene editing followed by RNA sequencing (RNA-seq) revealed that a subset of genes was positively regulated by YY2 and SET7/9, but negatively regulated by LSD1, which were enriched with genes involved in cell proliferation regulation. Importantly, YY2-regulated gene transcription, cell proliferation and tumor growth were dependent, at least partially, on YY2 K247 methylation. Finally, somatic mutations on YY2 found in cancer, which are in close proximity to K247, altered its methylation, DNA-binding activity and gene transcription it controls. Our findings revealed the first PTM with functional implications imposed on YY2 protein, and linked YY2 methylation with its biological functions.

17.
Nucleic Acids Res ; 45(6): 3503-3518, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899633

RESUMEN

JMJD6, a jumonji C (Jmj C) domain-containing protein demethylase and hydroxylase, has been implicated in an array of biological processes. It has been shown that JMJD6 interacts with and hydroxylates multiple serine/arginine-rich (SR) proteins and SR related proteins, including U2AF65, all of which are known to function in alternative splicing regulation. However, whether JMJD6 is widely involved in alternative splicing and the molecular mechanism underlying JMJD6-regulated alternative splicing have remained incompletely understood. Here, by using RASL-Seq, we investigated the functional impact of RNA-dependent interaction between JMJD6 and U2AF65, revealing that JMJD6 and U2AF65 co-regulated a large number of alternative splicing events. We further demonstrated the JMJD6 function in alternative splicing in jmjd6 knockout mice. Mechanistically, we showed that the enzymatic activity of JMJD6 was required for a subset of JMJD6-regulated splicing, and JMJD6-mediated lysine hydroxylation of U2AF65 could account for, at least partially, their co-regulated alternative splicing events, suggesting both JMJD6 enzymatic activity-dependent and independent control of alternative splicing. These findings reveal an intimate link between JMJD6 and U2AF65 in alternative splicing regulation, which has important implications in development and disease processes.


Asunto(s)
Empalme Alternativo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factor de Empalme U2AF/metabolismo , Animales , Células HEK293 , Humanos , Hidroxilación , Lisina/metabolismo , Ratones , Ratones Noqueados , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factor de Empalme U2AF/química
18.
Journal of Forensic Medicine ; (6): 457-469, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-663691

RESUMEN

Sudden death (SD) is a special kind of death owing to disease,which severely threatening the lives of community population.As the most common type of SD,sudden cardiac death (SCD) has always been a crucial content of identification and research in forensic pathology.This article reviews the research progress from the aspects of epidemiology,morphology,molecular pathology and virtual anatomy of SCD in forensic medicine,so as to provide a reference for the morphological identification,determination of cause of death,and integrated control of this kind of SD.

19.
Sci Rep ; 6: 21718, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902152

RESUMEN

Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Factor de Transcripción YY1/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular/genética , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Plásmidos/química , Plásmidos/metabolismo , Dominios Proteicos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección , Factor de Transcripción YY1/antagonistas & inhibidores , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...