Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38004632

RESUMEN

Introducing cover crops into maize rotation systems is widely practiced to increase crop productivity and achieve sustainable agricultural development, yet the potential for crop rotational diversity to contribute to environmental benefits in soils remains uncertain. Here, we investigated the effects of different crop rotation patterns on the physicochemical properties, enzyme activities, microbial biomass and microbial communities in soils from field experiments. Crop rotation patterns included (i) pure maize monoculture (CC), (ii) maize-garlic (CG), (iii) maize-rape (CR) and (iv) maize-annual ryegrass for one year (Cir1), two years (Cir2) and three years (Cir3). Our results showed that soil physicochemical properties varied in all rotation patterns, with higher total and available phosphorus concentrations in CG and CR and lower soil organic carbon and total nitrogen concentrations in the maize-ryegrass rotations compared to CC. Specifically, soil fertility was ranked as CG > Cir2 > CR > Cir3 > CC > Cir1. CG decreased enzyme activities but enhanced microbial biomass. Cir2 decreased carbon (C) and nitrogen (N) acquiring enzyme activities and soil microbial C and N concentrations, but increased phosphorus (P) acquiring enzyme activities and microbial biomass P concentrations compared to CC. Soil bacterial and fungal diversity (Shannon index) were lower in CG and Cir2 compared to CC, while the richness (Chao1 index) was lower in CG, CR, Cir1 and Cir2. Most maize rotations notably augmented the relative abundance of soil bacteria, including Chloroflexi, Gemmatimonadetes and Rokubacteria, while not necessarily decreasing the abundance of soil fungi like Basidiomycota, Mortierellomycota and Anthophyta. Redundancy analysis indicated that nitrate-N, ammonium-N and microbial biomass N concentrations had a large impact on soil bacterial communities, whereas nitrate-N and ammonium-N, available P, soil organic C and microbial biomass C concentrations had a greater effect on soil fungal communities. In conclusion, maize rotations with garlic, rape and ryegrass distinctly modify soil properties and microbial compositions. Thus, we advocate for garlic and annual ryegrass as maize cover crops and recommend a two-year rotation for perennial ryegrass in Southwest China.

2.
Front Genet ; 14: 1140083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274790

RESUMEN

Background: Complete androgen insensitivity syndrome (CAIS, OMIM; 300068) is a disorder of sex development with X-linked recessive inheritance. Cases of CAIS usually present as female phenotype, with primary amenorrhea and/or inguinal hernia. Family aggregation is a rare scenario. Methods: This study is a retrospective analysis of CAIS cases in a three-generation pedigree. The patients' genomes were determined by sequencing the androgen receptor (AR) gene. The clinical data of the patients, including manifestations, hormone levels, and AR variants, were analyzed. Results: Sixteen people in this family were involved. A deletion variant (c.1847_1849del; p. Arg616del) was identified in exon 3 of AR, which encodes the DNA binding domain. Until now, four patients and four carriers have been identified in three generations of this family. All the patients live as female, and one has developed gonadal malignancy. Conclusion: The present study identified a deletion variant in three generations of a family with CAIS, including four carriers and four patients. This study verified the genetic pattern and the corresponding clinical characteristics of CAIS. Furthermore, a case with gonadal malignancy was discovered. The information on diagnosis and treatment in this pedigree is useful for prenatal diagnosis and genetic counseling of similar families.

3.
Nat Commun ; 14(1): 3096, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248233

RESUMEN

African swine fever virus (ASFV) poses a great threat to the global pig industry and food security. Currently, 24 ASFV genotypes have been reported but it is unclear whether recombination of different genotype viruses occurs in nature. In this study, we detect three recombinants of genotype I and II ASFVs in pigs in China. These recombinants are genetically similar and classified as genotype I according to their B646L gene, yet 10 discrete fragments accounting for over 56% of their genomes are derived from genotype II virus. Animal studies with one of the recombinant viruses indicate high lethality and transmissibility in pigs, and deletion of the virulence-related genes MGF_505/360 and EP402R derived from virulent genotype II virus highly attenuates its virulence. The live attenuated vaccine derived from genotype II ASFV is not protective against challenge of the recombinant virus. These naturally occurring recombinants of genotype I and II ASFVs have the potential to pose a challenge to the global pig industry.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Proteínas Virales/genética , Virulencia/genética , Genotipo , Sus scrofa
4.
Front Microbiol ; 14: 1339125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274762

RESUMEN

Introduction: Shrubs have expanded into grasslands globally. However, the relative importance of aboveground and underground diversity and the relative importance of underground community assembly and diversity in shaping multifunctionality and functional trade-offs over shrub expansion remains unknown. Methods: In this study, aboveground and underground multitrophic communities (abundant and rare archaea, bacteria, fungi, nematodes, and protists) and 208 aboveground and underground ecosystem properties or indicators were measured at three stages (Grass, Mosaic, Shrub) of shrub expansion on the Guizhou subtropical plateau grassland to study multifunctionality and functional trade-offs. Results: The results showed that shrub expansion significantly enhanced aboveground, underground, and entire ecosystem multifunctionality. The functional trade-off intensities of the aboveground, underground, and entire ecosystems showed significant V-shaped changes with shrub expansion. Shrub expansion improved plant species richness and changed the assembly process and species richness of soil abundant and rare subcommunities. Plant species diversity had a greater impact on multifunctionality than soil microbial diversity by more than 16%. The effect of plant species diversity on functional trade-offs was only one-fifth of the effect of soil microbial diversity. The soil microbial species richness did not affect multifunctionality, however, the assembly process of soil microbial communities did. Rather than the assembly process of soil microbial communities, the soil microbial species richness affected functional trade-offs. Discussion: Our study is the first to couple multitrophic community assemblies to multifunctionality and functional trade-offs. Our results would boost the understanding of the role of aboveground and underground diversity in multifunctionality and functional trade-offs.

5.
J Oncol ; 2022: 4886907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478746

RESUMEN

Erythropoietin-producing hepatoma receptor A2 (EphA2), receptor tyrosine kinase, the most widespread member of the largest receptor tyrosine kinase family, plays a critical role in physiological and pathological conditions. In recent years, the role of EphA2 in the occurrence and development of cancer has become a research hotspot and is considered a promising potential target. Our previous studies have shown that EphA2 has an indisputable cancer-promoting role in cervical cancer, but its related mechanism requires further research. In this study, high-throughput sequencing was performed on EphA2 knockdown cervical cancer cells and the control group. An analysis of differentially expressed genes revealed that EphA2 may exert its cancer-promoting effect through C-X-C motif chemokine ligand 11 (CXCL11). In addition, we found that EphA2 could further regulate programmed cell death ligand 1 (PD-L1) through CXCL11. This has also been further demonstrated in in vivo experiments. Our study demonstrated that EphA2 plays a tumor-promoting role in cervical carcinoma through the CXCL11/PD-L1 pathway, providing new guidance for the targeted therapy and combination therapy of cervical carcinoma.

6.
PeerJ ; 10: e14314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389419

RESUMEN

Although the effects of herbivore camping on soil physicochemical properties have been studied, whether the effects alter the soil microbial communities (e.g., composition, functions, taxonomic and functional diversities, network) remain unknown, especially below the surface. Here, using paired subsoil samples from half month-camping and non-camping, we showed for the first time that camping significantly changed the relative abundance of 21 bacterial phylotypes and five fungal phylotypes. Specifically, we observed significant increases in the relative abundance of putative chitinase and terpenes vanillin-decomposition genes, nitrite reduction function (nirB, nasA), decreases in the relative abundance of putative carbon fixation genes (ackA, PGK, and Pak), starch-decomposition gene (dexB), gene coding nitrogenase (anfG), and tetracycline resistance gene (tetB) for bacterial communities, and significant decreases in the relative abundance of animal endosymbiont and increases in the relative abundance of litter saprotroph and endophyte for fungal communities. However, camping did not significantly impact the taxonomic and functional diversity. The niche restriction was the main driving force of bacterial and fungal community assembly. Compared to no camping, camping increased the stability of bacterial networks but decreased the stability of fungal networks. Camping exerted a positive effect on the network by compressing the niche width and reduced the change in the network by reducing the niche overlap. Our results suggest that camping restructures the soil microbial composition, function, and network, and provides a novel insight into the effect of animal camping on soil microbial communities in grassland.


Asunto(s)
Microbiota , Micobioma , Animales , Suelo/química , Herbivoria , Microbiota/genética , Bacterias/genética
7.
Front Plant Sci ; 13: 985574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161026

RESUMEN

Microbes, especially abundant microbes in bulk soils, form multiple ecosystem functions, which is relatively well studied. However, the role of rhizosphere microbes, especially rhizosphere rare taxa vs. rhizosphere abundant taxa in regulating the element circling, multifunctionality, aboveground net primary productivity (ANPP) and the trade-offs of multiple functions remains largely unknown. Here, we compared the multiple ecosystem functions, the structure and function of rhizosphere soil bacterial and fungal subcommunities (locally rare, locally abundant, regionally rare, regionally abundant, and entire), and the role of subcommunities in the Zea mays and Sophora davidii sole and Z. mays/S. davidii intercropping ecosystems in subtropical China. Results showed that intercropping altered multiple ecosystem functions individually and simultaneously. Intercropped Z. mays significantly decreased the trade-off intensity compared to sole Z. mays, the trade-off intensity under intercropped S. davidii was significantly higher than under intercropped Z. mays. The beta diversities of bacterial and fungal communities, and fungal functions in each subcommunity significantly differed among groups. Network analysis showed intercropping increased the complexity and positive links of rare bacteria in Z. mays rhizosphere, but decreased the complexity and positive links of rare bacteria in S. davidii rhizosphere and the complexity and positive links of fungi in both intercropped plants rhizosphere. Mantel test showed significant changes in species of locally rare bacteria were most strongly related to nitrogen-cycling multifunctionality, ANPP and trade-offs intensity, significant changes in species of locally rare fungus were most strongly related to carbon-cycling multifunctionality, phosphorus-cycling multifunctionality, and average ecosystem multifunctionality. This research highlights the potential and role of rare rhizosphere microorganisms in predicting and regulating system functions, productivity, and trade-offs.

8.
Front Microbiol ; 13: 1027097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687566

RESUMEN

Introduction: Long-term grazing profoundly affects grassland ecosystems, whereas how the soil microbiome and multiple soil ecosystem functions alter in response to two-decades of grazing, especially how soil microbiome (diversity, composition, network complexity, and stability) forms soil multifunctionality is rarely addressed. Methods: We used a long-term buffalo grazing grassland to measure the responses of soil physicochemical attributes, stoichiometry, enzyme activities, soil microbial niche width, structure, functions, and networks to grazing in a subtropical grassland of Guizhou Plateau, China. Results: The evidence from this work suggested that grazing elevated the soil hardness, available calcium content, and available magnesium content by 6.5, 1.9, and 1.9 times (p = 0.00015-0.0160) and acid phosphatase activity, bulk density, pH by 59, 8, and 0.5 unit (p = 0.0014-0.0370), but decreased the soil water content, available phosphorus content, and multifunctionality by 47, 73, and 9-21% (p = 0.0250-0.0460), respectively. Grazing intensified the soil microbial carbon limitation (+78%, p = 0.0260) as indicated by the increased investment in the soil ß-glucosidase activity (+90%, p = 0.0120). Grazing enhanced the complexity and stability of the bacterial and fungal networks but reduced the bacterial Simpson diversity (p < 0.05). The bacterial diversity, network complexity, and stability had positive effects, while bacterial and fungal compositions had negative effects on multifunctionality. Discussions: This work is an original attempt to show that grazing lowered multifunctionality via the reduced bacterial diversity and shifted soil bacterial and fungal compositions rather than the enhanced bacterial and fungal network complexities and stability by grazing. Protecting the bacterial diversity from decreasing, optimizing the composition of bacteria and fungi, and enhancing the complexity and stability of bacterial network may be conducive to improving the soil multifunction of grazing grassland, on a subtropical grassland.

9.
Curr Drug Targets ; 23(2): 145-155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34139979

RESUMEN

Endometrial cancer is one of the three most common malignant tumors in the female reproductive system. Advanced and recurrent endometrial cancers have poor prognoses and lack effective treatments. Poly (ADP-ribose) polymerase (PARP) inhibitors have been applied to many different types of tumors, and they can selectively kill tumor cells that are defective in homologous recombination repair. Endometrial cancer is characterized by mutations in homologous recombination repair genes; accordingly, PARP inhibitors have achieved positive results in off-label treatments of endometrial cancer cases. Clinical trials of PARP inhibitors as monotherapies and within combination therapies for endometrial cancer are ongoing. For this review, we searched PubMed with "endometrial cancer" and "PARP inhibitor" as keywords, and we used "olaparib", "rucaparib", "niraparib" and "talazoparib" as search terms in clinicaltrials.gov for ongoing trials. The literature search ended in October 2020, and only English-language publications were selected. Multiple studies confirm that PARP inhibitors play an important role in killing tumor cells with defects in homologous recombination repair. Its combination with immune checkpoint inhibitors, PI3K/AKT/mTOR pathway inhibitors, cell cycle checkpoint inhibitors, and other drugs can improve the treatment of endometrial cancer.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo
10.
Onco Targets Ther ; 14: 3929-3942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234461

RESUMEN

PURPOSE: Endometrial cancer (EC) is the sixth most common cancer in women and its incidence and mortality have been rising over the last decades. The latest research indicates that FABP4 plays a significant role in multiple types of cancer. But few studies were focused on EC. The aim of this article is to investigate whether FABP4 can suppress tumor growth and metastasis of EC via PI3K/Akt pathway to provide a novel therapeutic target for the treatment of EC. MATERIALS AND METHODS: FABP4 mRNA levels of EC were analysed through The Cancer Genome Atlas database (TCGA), and expression of FABP4 in EC cancer tissues was determined by immunohistochemistry (IHC) assays. Stable overexpressing cell lines were established using lentivirus infection to analyze the biological function of FABP4 in vitro. CCK8 assay and colony formation assay were performed to assess cell proliferation ability. Wound healing assay and transwell were performed to analyse migration and invasion of cells. The subcutaneous xenograft mouse model was used to evaluate tumor growth in vivo. Additionally, all protein levels were detected by Western blotting assay. RESULTS: We found that the expression of the FABP4 mRNA was decreased in tumor samples compared to normal tissue according to TCGA database analysis. Subsequent experimental mRNA and protein expression analysis confirmed that FABP4 expression was lower in EC tissue than normal endometrial tissue. In addition, we found overexpression of FABP4 inhibited the proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Further functional and mechanistic analysis of FABP4 demonstrated that its function is mediated by restraining the phosphorylation of PI3K/Akt signaling pathway. CONCLUSION: Our studies shed light for the first time about the functional role of FABP4 in EC and provide a novel biomarker for EC as well as a therapeutic target for the therapy of EC.

11.
Drug Des Devel Ther ; 15: 1797-1810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33958857

RESUMEN

PURPOSE: OSU-03012 is a celecoxib derivative lacking cyclooxygenase-2 inhibitory activity and a potent PDK1 inhibitor which has been shown to inhibit tumor growth in various ways. However, the role of OSU-03012 in endometrial carcinoma (EC) in which the PI3K/Akt signaling pathway highly activated has not been studied. Here, we determined the potency of OSU-03012 in suppressing EC progression in vitro and in vivo, and studied the underlined mechanisms. METHODS: The human EC Ishikawa and HEC-1A cells were used as the in vitro models. CCK8 assay and flow cytometry were conducted to evaluate cell proliferation, cell cycle progression, and apoptosis. The metastatic ability was evaluated using the transwell migration assay. The Ishikawa xenograft tumor model was used to study the inhibitory effects of OSU-03012 on EC growth in vivo. Western blot analysis was performed to evaluate expressions of the cell cycle and apoptosis associated proteins. RESULTS: OSU-03012 could inhibit the progression of EC both in vitro and in vivo by disrupting Akt signaling. It reduced the metastatic ability of EC, led to G2/M cell cycle arrest and induced apoptosis via the mitochondrial apoptosis pathway. CONCLUSION: Our data indicated that OSU-03012 could inhibit the progression of EC in vitro and in vivo. It can potentially be used as the targeted drug for the treatment of EC by inhibiting Akt signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirazoles/farmacología , Sulfonamidas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/administración & dosificación , Transducción de Señal/efectos de los fármacos , Sulfonamidas/administración & dosificación , Células Tumorales Cultivadas
12.
J Cell Mol Med ; 25(6): 2967-2975, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33586348

RESUMEN

Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase plays an important role in tissue organization and homeostasis in normal organs. EphA2 is overexpressed in a variety of types of solid tumours with oncogenic functions. However, the role of EphA2 in cervical cancer (CC) is still needed to be further explored. Here, we examined the role of EphA2 by establishing a stable EphA2 knock-down CC cell lines or a stable EphA2-overexpressed CC cells lines. Overexpression of EphA2 increased cell proliferation and migration of CC while EphA2 knock-down decreased the CC tumorigenicity. In addition, EphA2 knock-down suppressed CC tumour development in the xenograft mouse model. Inhibition of EphA2 by AWL-II-41-27, EphA2-specific tyrosine kinase inhibitor, or knock-down of EphA2 decreased mRNA and protein expression of cyclin-dependent kinase (CDK) 6 in CC cells, which increased cellular susceptibility to epirubicin (EPI), an anti-cancer chemotherapy drug. A clinicopathological study of EphA2 was conducted on a cohort of 158 human CC patients. EphA2 protein expression was positively correlated with CDK6 protein expression, invasion depth, lymph node metastasis and clinicopathological stage (P < .05). This study demonstrates the oncogenic activity of EphA2 in vitro and in vivo, which provides insights into the relevant mechanisms that might lead to novel treatments for CC.


Asunto(s)
Transformación Celular Neoplásica/genética , Quinasa 6 Dependiente de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Receptor EphA2/genética , Neoplasias del Cuello Uterino/etiología , Neoplasias del Cuello Uterino/metabolismo , Adulto , Anciano , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Receptor EphA2/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
13.
Sci Total Environ ; 761: 143663, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33360134

RESUMEN

Microbes simultaneously drive multiple functions (multifunctionality) that support human well-being. However, the structure and function of microbial communities and their impact on soil multifunctionality following grassland afforestation remains unknown, thus hindering our ability to formulate conservation policies. We compared soil bacterial and fungal communities, soil abiotic properties, and soil nitrogen (N) function and multifunctionality in the afforested sites that were previously grassland, on a subtropical plateau in China. We also explored the degree to which the niche complementarity effect and the selection effect of microbes are linked to soil N function and multifunctionality. We found that afforestation of grassland significantly decreased pH, available N concentration and density, and soil multifunctionality. However, afforestation significantly increased C (carbon) limitation and shifted soil microbes from being limited by N to, instead, being co-limited by N and P (phosphorus). The significant decrease in available N was primarily driven by soil microbes. In shaping soil N availability, the effect of bacterial diversities was stronger than that of fungal diversities, and the effect of fungal functional diversities was stronger than that of bacterial functional diversities. The effect of functional diversities was greater than that of all the significant changes in the functions and, also, the significant changes in the N-related functions. These results further emphasized that functional niche complementarity dominated soil N availability. In addition, bacterial taxonomic diversities showed positive effects of niche complementarity on soil multifunctionality; ultimately, the losses in bacterial taxonomic diversities derived from the increases in C limitation and the shifts in NP limitation combined to impaired soil multifunctionality. Our results suggested that the optimization of soil microbial functional diversities might increase soil N availability, and that minimizing losses of soil microbial taxonomic diversities by optimizing soil abiotic environments might improve soil multifunctionality.


Asunto(s)
Nitrógeno , Suelo , Carbono/análisis , China , Pradera , Humanos , Nitrógeno/análisis , Microbiología del Suelo
14.
Curr Drug Targets ; 21(11): 1047-1055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32107990

RESUMEN

BACKGROUND: Endometriosis (EMS) is a gynecological disease defined by the translocation and growth of endometrial tissue in other tissues or organs outside the uterus. Its clinical manifestations are dysmenorrhea, irregular menstruation, and even infertility. Although EMS is a benign disease, it has the characteristics of malignant tumor and the potential of malignant transformation. Recent studies have found that EMS may involve epigenetic changes and that various epigenetic aberrations, especially aberrant DNA methylation may play an essential role in the pathogenesis of EMS. Previous studies have elucidated the epigenetic regulators of EMS and reported variations in epigenetic patterns of genes known to be associated with abnormal hormonal, immune, and inflammatory states of EMS. With the development of high-throughput sequencing and other biomolecular technologies, we have a better understanding of genome-wide methylation in EMS. OBJECTIVE: This article will discuss the potentiality of targeting DNA methylation as the therapeutic approach for EMS. RESULTS: This article reviews the role of DNA methylation in the pathophysiology of EMS and provides insight into a novel therapeutic approach for EMS by targeting DNA methylation modifiers. We also review the current progress in using DNA methylation inhibitors in EMS therapy and the potential promise and challenges ahead. CONCLUSION: Aberrant DNA methylation plays an essential role in the pathogenesis of EMS and epigenetic agents targeting DNA methyltransferases are expected to be the theoretical basis for the new treatment of EMS.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Epigénesis Genética/efectos de los fármacos , Islas de CpG/genética , Endometriosis/diagnóstico , Femenino , Humanos , Regiones Promotoras Genéticas
15.
Sci Total Environ ; 709: 136207, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887509

RESUMEN

Global shrub encroachment (SE) affects the structure and function of grassland ecosystem. The effects of SE on plant and soil abiotic properties have been well studied; however, little is known about the extent to which driving forces structure soil microbes under SE, especially in subalpine regions of the Guizhou Plateau of China, which is undergoing progressive SE. We investigated the plant factors (viz, plant diversity and relative shrub cover), soil physicochemical properties, enzymatic activities, and microbial communities, quantified microbial element limitations under three encroachment stages, and disentangled the effects sizes of the factors that structure the diversity and composition of soil microbial communities. Redundancy analysis showed that soil factors made a greater contribution than plant factors to shaping the diversity and composition of the soil bacterial community, soil chemical factors made a greater contribution than physical factors both to structuring the diversity and composition of the soil bacterial community and to structuring the composition of the soil fungal community; and soil nutrient stoichiometry made a greater contribution than soil nutrient content to shaping soil bacterial community's diversity and fungal community's composition. In contrast, soil nutrient content made a greater contribution than soil nutrient stoichiometry to shaping the soil bacterial community's composition. The decrease in bacterial community's diversity observed under SE was attributable to increases in the carbon and nitrogen limitations consequent to SE, and the nitrogen limitation had a greater contribution to the soil bacterial community's diversity and composition than did the carbon limitation. These findings provide updated knowledge of the driving forces shaping the diversity and composition of soil microbial communities, which could be crucial for improving microbial prediction models and revealing the element cycling that occurs in SE biomes.


Asunto(s)
Micobioma , Microbiología del Suelo , Suelo , Bacterias , China
16.
Vaccine ; 37(40): 5925-5929, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31471151

RESUMEN

Ducks play a key role in the maintenance and spread of avian influenza viruses (AIVs) in nature, and control of AIVs in ducks has important implications for AIV eradication from poultry. We previously constructed a recombinant duck enteritis virus (DEV), rDEVus78HA, that expresses the HA gene of an H5N1 AIV and showed that rDEVus78HA immunization provides complete protection against both DEV and H5N1 AIV challenge in specific-pathogen-free ducks. In this study, we performed a 60-week clinical trial and found that this rDEVus78HA vaccine can function as a bivalent vaccine in farmed ducks against lethal challenge with DEV and H5N1 virus. Moreover, we found that rDEVus78HA-vaccinated ducks were efficiently protected against challenges with recently isolated heterologous H5N6 and H5N8 viruses. Our results demonstrate that rDEVus78HA could be extremely valuable for the control of DEV and H5 AIVs in ducks.


Asunto(s)
Patos/inmunología , Enteritis/inmunología , Vectores Genéticos/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Enfermedades de las Aves de Corral/inmunología , Animales , Patos/virología , Enteritis/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunación/métodos , Vacunas Sintéticas/inmunología
17.
Vet Microbiol ; 232: 146-150, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31030839

RESUMEN

Newcastle disease virus (NDV) is a major threat to poultry worldwide. Virulent Newcastle disease virus infection can cause 100% morbidity and mortality in chickens. Vaccination is the most effective way to prevent and control NDV outbreaks in poultry. Previously, we demonstrated that a duck enteritis virus (DEV) vaccine strain is a promising vector to generate recombinant vaccines in chickens. Here, we constructed two recombinant DEVs expressing the F protein (rDEV-F) or HN protein (rDEV-HN) of NDV. We then evaluated the protective efficacy of these recombinant DEVs in specific-pathogen-free chickens. rDEV-F induced 100% protection of chickens from lethal NDV challenge after a single dose of 104 TCID50, whereas rDEV-HN did not induce effective protection. rDEV-F may therefore serve as a promising vaccine candidate for chickens. This is the first report of a DEV-vectored vaccine providing robust protection against lethal NDV infection in chickens.


Asunto(s)
Mardivirus/genética , Enfermedad de Newcastle/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Proteínas Virales de Fusión/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales , Pollos/inmunología , Pollos/virología , Patos/virología , Proteína HN/genética , Proteína HN/inmunología , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Proteínas Virales de Fusión/genética , Vacunas Virales/administración & dosificación
18.
Biomed Res Int ; 2014: 703930, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25215289

RESUMEN

In 2010, a novel Tembusu virus (TMUV) that caused a severe decrease in the egg production of ducks was isolated in southeast China. Given the novelty of this duck pathogen, little information is available regarding its pathogenesis. Here, we systematically investigated the replication kinetics of TMUV PTD2010 in adult male and female ducks. We found that PTD2010 was detectable in most of the parenchymatous organs as well as the oviduct and intestinal tract from days 1 to 7 after inoculation. Viral titers were maintained at high levels for at least 9 days in the spleen, kidney, bursa of Fabricius, brain, and ovary. No virus was detected in any of these organs or tissues at 18 days after inoculation. PTD2010, thus, causes systemic infections in male and female ducks; its replication kinetics show similar patterns in most organs, with the exception of the ovaries and testes.


Asunto(s)
Patos/virología , Flavivirus , Enfermedades de las Aves de Corral/virología , Tropismo Viral , Animales , Femenino , Intestinos/patología , Masculino , Ovario/patología , Enfermedades de las Aves de Corral/patología , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA