Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photoacoustics ; 28: 100426, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36419744

RESUMEN

Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic contrast agents reported in the past decade for photoacoustic and fluorescence imaging including members of the cyanine family, D-A-D structure dyes, phthalocyanines and semiconducting polymers. Improved imaging contrast and higher resolution could be favorably achieved by rational design of NIR-II fluorophores by tuning their properties including molar extinction coefficient, fluorescence quantum yield, emission wavelength and others. A wide variety of applications using NIR-II dyes has been realized including imaging of tumors, lymphatics, brains, intestines and others. Emerging applications such as targeted imaging and activable imaging with improved resolution and sensitivity have been demonstrated by innovative chemical modification of NIR-II dyes. Looking forward, rational design of improved NIR-II dyes for advanced bioimaging is likely to remain an area of interest for next-generation potential approaches to disease diagnosis.

2.
Small ; 18(6): e2104132, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850550

RESUMEN

Photoacoustic imaging (PA) in the second near infrared (NIR-II) window presents key advantages for deep tissue imaging owing to reduced light scattering and low background signal from biological structures. Here, a thiadiazoloquinoxaline-based semiconducting polymer (SP) with strong absorption in the NIR-II region is reported. After encapsulation of SP in Pluronic F127 (F127) followed by removal of excess surfactant, a dual functional polymer system named surfactant-stripped semiconductor polymeric micelles (SSS-micelles) are generated with water solubility, storage stability, and high photothermal conversion efficiency, permitting tumor theranostics in a mouse model. SSS-micelles have a wideband absorption in the NIR-II window, allowing for the PA imaging at both 1064 and 1300 nm wavelengths. The PA signal of the SSS-micelles can be detected through 6.5 cm of chicken breast tissue in vitro. In mice or rats, SSS-micelles can be visualized in bladder and intestine overlaid 5 cm (signal to noise ratio, SNR ≈ 17 dB) and 5.8 cm (SNR over 10 dB) chicken breast tissue, respectively. This work demonstrates the SSS-micelles as a nanoplatform for deep tissue theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animales , Ratones , Micelas , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia , Polímeros/química , Medicina de Precisión , Ratas , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA