Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Surg ; 23(1): 369, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066450

RESUMEN

BACKGROUND: The use of 3D-printed Patient-Specific Instruments (PSI) has been investigated to enhance the postoperative functional results in total hip arthroplasty (THA) and has been recognized as an innovative approach for the optimal alignment of hip implant components. Point-of-care production is gradually becoming the norm for PSI manufacturing. The purpose of this article is to assess the accuracy and safety of PSI for total hip arthroplasty performed at the point-of-care in Vietnam. METHODS: 34 THA cases were assessed in this prospective study. A template for the size and orientation of the implant and the design of the PSI was generated using data from preoperative 3D computed tomography (CT) scanning of the lower limb. The principal surgeon determined the implants' position and PSI design directly using the software. The PSI is then produced using a 3D-compatible resin printer in our manufacturing hospital. The PSI, consisting of an acetabulum and a femoral component placed press-fit on the bony surface, guided surgeons to precisely ream the acetabulum and cut the femoral neck according to the pre-planned plane. Postoperative CT scanning was obtained and superimposed onto the 3D model of the implant to evaluate the accuracy of the procedure by comparing the orientation values of the cup and the alignment of the stem between the planned and the actual results. Intra- and postoperative clinical parameters of surgery, including surgical time, intra-operative blood loss, complications, and the first ambulation, were also recorded to evaluate the safety of the surgery. RESULTS: The preparation for PSI required an average of 3 days. 94% of cup size and 91% of stem size were correctly selected. The mean values of postoperative inclination and anteversion were 44.2° ± 4.1° and 19.2° ± 5.6°, respectively. 64.7% of cases deviated from planned within the ± 50 range and 94.1% within the ± 10° range. There was no significant statistical difference between the planned and the achieved values of stem anteversion, osteotomy height, and leg length discrepancy (p > 0.05). The average surgical time was 82.5° ± 10.8 min, and the intraoperative blood loss was estimated at 317.7° ± 57.6 ml. 64.7% of patients could walk on the day of surgery. There were no complications reported. CONCLUSIONS: The point-of-care manufactured PSI is a useful solution for improving the accuracy of total hip arthroplasty surgery, especially in restoring implant orientation and reducing leg length discrepancy. However, long-term clinical follow-up evaluation is needed to confirm the efficacy and safety of this approach.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Estudios Prospectivos , Sistemas de Atención de Punto , Tomografía Computarizada por Rayos X , Pérdida de Sangre Quirúrgica
2.
ACS Appl Mater Interfaces ; 15(50): 58746-58760, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051258

RESUMEN

Point-of-care monitoring of physiological signals such as electrocardiogram, electromyogram, and electroencephalogram is essential for prompt disease diagnosis and quick treatment, which can be realized through advanced skin-worn electronics. However, it is still challenging to design an intimate and nonrestrictive skin-contact device for physiological measurements with high fidelity and artifact tolerance. This research presents a facile method using a "tacky" surface to produce a tight interface between the ACNT skin-like electronic and the skin. The method provides the skin-worn electronic with a stretchability of up to 70% strain, greater than that of most common epidermal electrodes. Low-density ACNT bundles facilitate the infiltration of adhesive and improve the conformal contact between the ACNT sheet and the skin, while dense ACNT bundles lessen this effect. The stretchability and conformal contact allow the ACNT sheet-based electronics to create a tight interface with the skin, which enables the high-fidelity measurement of physiological signals (the Pearson's coefficient of 0.98) and tolerance for motion artifacts. In addition, our method allows the use of degradable substrates to enable reusability and degradability of the electronics based on ACNT sheets, integrating "green" properties into on-skin electronics.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Piel , Electrónica , Epidermis
3.
Food Sci Nutr ; 11(11): 7296-7310, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970392

RESUMEN

Nigella sativa, commonly known as the black seed, is a culinary spice therapeutic against many ailments. Common preparation practice of roasting or heating the seeds often deteriorates bioactive compounds, which can be remedied with superheated steam (SHS). With roasting temperatures of 150, 200, and 250°C and roasting times of 10, 15, and 20 min, convection and SHS roasting media were tested, and their effects on proximate analysis, antioxidant assays, and oil quality were evaluated. For proximate content, moisture significantly decreased from 9.08% in unroasted seeds to 4.18%-1.04% in roasted seeds, while fat increased to as high as 44.76% from 32.87% in unroasted seeds. Roasting only slightly increased ash content and had no significant impact on protein and carbohydrate content. SHS roasted black seeds had better DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging capacity (RSC) than convection roasted seeds. DPPH RSC decreased with elevated roasting time and temperature, conversely related to total phenolic content, which increased with increased roasting time and temperature. Oil of roasted seeds developed an increasingly intense brown color from an initial light, yellow, unroasted oil with better extraction efficiency in SHS roasting. For oil quality analysis, free fatty acid values were significantly lower in both roasted samples. Peroxide value was initially recorded at 84 in convection and 48 (meq O2/kg of oil) in SHS roasted samples. In contrast, p-anisidine values were initially recorded at 28.36 in convection roasted samples compared to 23.73 in SHS roasted samples. Based on all quality analyses, SHS showed better potential in black seed quality preservation.

4.
ACS Appl Mater Interfaces ; 15(32): 38930-38937, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531165

RESUMEN

The development of fifth-generation (5G) communications and the Internet of Things (IoT) has created a need for high-performance sensing networks and sensors. Improving the sensitivity and reducing the energy consumption of these sensors can improve the performance of the sensing network and conserve energy. This paper reports a large enhancement of the photovoltaic effect in a 3C-SiC/Si heterostructure and the tunability of the photovoltage under the impact of a temperature gradient, which has the potential to increase the sensitivity and reduce the energy consumption of microsensors. To start with, cubic silicon carbide (3C-SiC) was grown on a silicon wafer, and a micro-3C-SiC/Si heterostructure device was then fabricated using standard photolithography. The result revealed that the sensor could either capture light energy, transform it into electrical energy for self-power purposes, or detect light with intensities of 1.6 and 4 mW/cm2. Under the impact of the temperature gradient induced by conduction heat transfer from a heater, the measured photovoltage was improved. This thermo-phototronic coupling enhanced the photovoltage up to 51% at a temperature gradient of 8.73 K and light intensity of 4 mW/cm2. Additionally, the enhancement can be tuned by controlling the direction of the temperature gradient and the temperature difference. These findings indicate the promise of the temperature gradient in SiC/Si heterostructures for developing high-performance temperature sensors and self-powered photodetectors.

5.
ACS Appl Mater Interfaces ; 15(25): 29777-29788, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37318848

RESUMEN

Electrohydrodynamic atomization (EHDA) provides unparalleled control over the size and production rate of particles from solution. However, conventional methods produce highly charged particles that are not appropriate for inhalation drug delivery. We present a self-propelled EHDA system to address this challenge, a promising one-step platform for generating and delivering charge-reduced particles. Our approach uses a sharp electrode to produce ion wind, which reduces the cumulative charge in the particles and transports them to a target in front of the nozzle. We effectively controlled the morphologies of polymer products created from poly(vinylidene fluoride) (PVDF) at various concentrations. Our technique has also been proven safe for bioapplications, as evidenced by the delivery of PVDF particles onto breast cancer cells. The combination of simultaneous particle production and charge reduction, along with its direct delivery capability, makes the self-propelled EHDA a versatile technique for drug delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polivinilos , Tamaño de la Partícula
6.
Ther Clin Risk Manag ; 19: 97-104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718250

RESUMEN

Objective: This study aims to compare 1-month's efficacy and safety of single-session ethanol ablation and radiofrequency ablation for treating both purely cystic nodules and predominantly cystic thyroid nodules. Materials and methods: This short-term retrospective study was approved by the Ethics Committee of the Institutional Review Board of Danang Family hospital, and written informed consent for procedures was obtained for all patients. Thirty-nine patients who presented with cystic thyroid nodules and met inclusion criteria were extracted from the computerized medical records. The internal fluid of cystic thyroid nodules was aspirated as much as possible. Ethanol ablation was performed using 18-gauge needles with 99.5% ethanol, and RFA used a cooled-electrode RFA system and 18-gauge internally cooled electrodes via the trans-isthmic approach, moving-shot technique. Nodule volume, therapeutic success rate, the largest diameter, thyroid function tests, and complications were evaluated and compared before and after treatment in each group. Results: Among 39 patients, 17 patients were undergone EA (mean age of 47.35 years; the proportion of female of 76.5%; purely thyroid cyst percentage of 41.4%) and 22 patients were undergone RFA (mean age of 46.63 years; the proportion of female of 86.4%; purely thyroid cyst percentage of 54.5%). Both treatment techniques showed a significant reduction of the largest diameter and nodule volume (p<0.05) without complications. RFA reduced nodule volume and the largest nodule size greater than EA treatment at 1-month post-ablation (p<0.05). In addition, the therapeutic success rate in the RFA group was higher than in the EA group. Conclusion: Both RFA and EA treatment with single-session confirm the efficacy and safety for cystic thyroid nodules at 1-month follow-up, RFA reduced greater in nodule volume and the largest nodule size than the EA treatment. Thus, the therapeutic success rate in the RFA group was higher than in the EA group.

7.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939711

RESUMEN

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Asunto(s)
Terapia por Estimulación Eléctrica , Neuroestimuladores Implantables , Nanoestructuras , Semiconductores , Compuestos Inorgánicos de Carbono/química , Terapia por Estimulación Eléctrica/instrumentación , Membranas Artificiales , Compuestos de Silicona/química , Dióxido de Silicio/química
8.
ACS Nano ; 16(7): 10890-10903, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816450

RESUMEN

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices. Here, we report materials, device designs, and assembly schemes for transparent and stable cubic silicon carbide (3C-SiC)-based bioelectronic systems that facilitate tissue ablation, with the capability for integration onto the tips of endoscopes. The excellent optical transparency of SiC-on-glass (SoG) allows for direct observation of areas of interest, with superior electronic functionalities that enable multiple biological sensing and stimulation capabilities to assist in electrical-based ablation procedures. Experimental studies on phantom, vegetable, and animal tissues demonstrated relatively short treatment times and low electric field required for effective lesion removal using our SoG bioelectronic system. In vivo experiments on an animal model were conducted to explore the versatility of SoG electrodes for peripheral nerve stimulation, showing an exciting possibility for the therapy of neural disorders through electrical excitation. The multifunctional features of SoG integrated devices indicate their high potential for minimally invasive, cost-effective, and outcome-enhanced surgical tools, across a wide range of biomedical applications.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , Animales , Electrónica , Electrodos
9.
ACS Appl Mater Interfaces ; 14(19): 22593-22600, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35523205

RESUMEN

Utilizing harvesting energy to power sensors has been becoming more critical in the current age of the Internet of Things. In this paper, we propose a novel technology using a monolithic 3C-SiC/Si heterostructure to harvest photon energy to power itself and simultaneously sense the surrounding temperature. The 3C-SiC/Si heterostructure converts photon energy into electrical energy, which is manifested as a lateral photovoltage across the top material layer of the heterostructure. Simultaneously, the lateral photovoltage varies with the surrounding temperature, and this photovoltage variation with temperature is used to monitor the temperature. We characterized the thermoresistive properties of the 3C-SiC/Si heterostructure, evaluated its energy conversion, and investigated its performance as a light-harvesting self-powered temperature sensor. The resistance of the heterostructure gradually drops with increasing temperature with a temperature coefficient of resistance (TCR) ranging from more than -3500 to approximately -8200 ppm/K. The generated lateral photovoltage is as high as 58.8 mV under 12 700 lx light illumination at 25 °C. The sensitivity of the sensor in the self-power mode is as high as 360 µV·K-1 and 330 µV·K-1 under illumination of 12 700 lx and 7400 lx lights, respectively. The sensor harvests photon energy to power itself and measure temperatures as high as 300 °C, which is impressive for semiconductor-based sensor. The proposed technology opens new avenues for energy harvesting self-powered temperature sensors.

10.
Sensors (Basel) ; 22(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35271054

RESUMEN

Vietnam, one of the three leading rice producers globally, has recently seen an increased threat to its rice production emanating from climate extremes (floods and droughts). Understanding spatio-temporal variability in precipitation and soil moisture is essential for policy formulations to adapt and cope with the impacts of climate extremes on rice production in Vietnam. Adopting a higher-order statistical method of independent component analysis (ICA), this study explores the spatio-temporal variability in the Climate Hazards Group InfraRed Precipitation Station's (CHIRPS) precipitation and the Global Land Data Assimilation System's (GLDAS) soil moisture products. The results indicate an agreement between monthly CHIRPS precipitation and monthly GLDAS soil moisture with the wetter period over the southern and South Central Coast areas that is latter than that over the northern and North Central Coast areas. However, the spatial patterns of annual mean precipitation and soil moisture disagree, likely due to factors other than precipitation affecting the amount of moisture in the soil layers, e.g., temperature, irrigation, and drainage systems, which are inconsistent between areas. The CHIRPS Standardized Precipitation Index (SPI) is useful in capturing climate extremes, and the GLDAS Standardized Soil Moisture Index (SSI) is useful in identifying the influences of climate extremes on rice production in Vietnam. During the 2016-2018 period, there existed a reduction in the residual rice yield that was consistent with a decrease in soil moisture during the same time period.


Asunto(s)
Oryza , Suelo , Clima , Vietnam , Agua/análisis
11.
Biosens Bioelectron ; 205: 114088, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219947

RESUMEN

Recent advances in micro-electromechanical systems (MEMS) has allowed unprecedent perspectives for label-free detection (LFD) of biological and chemical analytes. Additionally, these LFD technologies offer the potential to design high resolution and high throughput sensing platforms, with the promise of further miniaturization. However, the immobilization of biomolecules onto inorganic surfaces without impacting their sensing abilities is crucial for designing these LFD technologies. Currently, covalent functionalization of self-assembled monolayers (SAMs) present promising pathways for improving assay sensitivity, reproducibility, surface stability and proximity of binding sites to the sensor surface. Herein, we investigate the use of chemical vapor deposition of 3-(glycidyloxypropyl)-trimethoxysilane (GOPTS) as a versatile SAM for the covalent functionalization of a SiO2 microcantilever array (MCA) for carbohydrate-lectin interactions with picogram sensitivity. Additionally, we demonstrate glycan immobilization to MCA is feasible using traditional piezoelectric microarray printer technology. Given the complexity of the glycome, the ability to spot samples in a high-throughput manner establishes our MCA as robust, label-free, and scalable means to analyze carbohydrate-protein interactions These findings demonstrate that GOPTS SAMs provide a suitable biofunctionalization route for MEMS and provides the proof of principle that can be extended to various LFD technologies toward a truly high-throughput and high-resolution platform.


Asunto(s)
Técnicas Biosensibles , Lectinas , Carbohidratos/química , Reproducibilidad de los Resultados , Dióxido de Silicio
12.
Small ; 18(4): e2105748, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874620

RESUMEN

Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.


Asunto(s)
Electrónica , Nanoestructuras , Nanoestructuras/química , Organoides
13.
ACS Appl Mater Interfaces ; 13(46): 55329-55338, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34752067

RESUMEN

It is critical to investigate the charge carrier gradient generation in semiconductor junctions with an asymmetric configuration, which can open a new platform for developing lateral photovoltaic and self-powered devices. This paper reports the generation of a charge carrier gradient in a 3C-SiC/Si heterojunction with an asymmetric electrode configuration. 3C-SiC/Si heterojunction devices with different electrode widths were illuminated by laser beams (wavelengths of 405, 521, and 637 nm) and a halogen bulb. The charge carrier distribution along the heterojunction was investigated by measuring the lateral photovoltage generated when the laser spot scans across the 3C-SiC surface between the two electrodes. The highest lateral photovoltage generated is 130.58 mV, measured in the device with an electrode width ratio of 5 and under 637 nm wavelength and 1000 µW illumination. Interestingly, the lateral photovoltage was generated even under uniform illumination at zero bias, which is unusual for the lateral photovoltage, as it can only be generated when unevenly distributed photogenerated charge carriers exist. In addition, the working mechanism and uncovered behavior of the lateral photovoltaic effect are explained based on the generation and separation of electron-hole pairs under light illumination and charge carrier diffusion theory. The finding further elaborates the underlying physics of the lateral photovoltaic effect in nano-heterojunctions and explores its potential in developing optoelectronic sensors.

14.
Mater Horiz ; 8(8): 2123-2150, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846421

RESUMEN

The piezoresistive effect has been a dominant mechanical sensing principle that has been widely employed in a range of sensing applications. This transducing concept still receives great attention because of the huge demand for developing small, low-cost, and high-performance sensing devices. Many researchers have extensively explored new methods to enhance the piezoresistive effect and to make sensors more and more sensitive. Many interesting phenomena and mechanisms to enhance the sensitivity have been discovered. Numerous review papers on the piezoresistive effect have been published; however, there is no comprehensive review article that thoroughly analyses methods and approaches to enhance the piezoresistive effect. This paper comprehensively reviews and presents all the advanced enhancement methods ranging from the quantum physical effect and new materials to nanoscopic and macroscopic structures, and from conventional rigid to flexible, stretchable and wearable applications. In addition, the paper summarises results recently achieved on applying the above-mentioned innovative sensing enhancement techniques in making extremely sensitive piezoresistive transducers.


Asunto(s)
Dispositivos Electrónicos Vestibles
15.
Int J Endocrinol ; 2021: 7556393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552630

RESUMEN

OBJECTIVE: The aims of this study are to evaluate the safety and efficacy of RFA in the treatment of benign thyroid nodule(s) and to find independent factors related to the volume reduction rate of the nodule(s). MATERIALS AND METHODS: This short-term prospective study from a single medical center was conducted on 93 benign thyroid nodules in 93 patients treated with RFA. Two basic techniques were used: the trans-isthmic approach and moving-shot technique. Clinical and ultrasonography examinations were performed at 1- and 3-month follow-up after the treatment session. Primary outcomes included volume reduction ratio (VRR) at 1-month and 3-month follow-ups; secondary outcomes were therapeutic success rate and complications. Multiple linear regression analysis was used to determine independent factors associated with VRR. RESULTS: A final sample of 78 patients with 78 nodules, given participant rate 83.8% (including 60 solid nodules, 16 predominantly cystic nodules, and 2 thyroid cysts), was followed up for 3 months. The mean volume reduction ratio was 41.47% and 64.72% after 1-month and 3-month follow-ups, respectively. The therapeutic success rate was 30.8% at 1-month and 84.6% at 3-month follow-ups. Symptom score and cosmetic score improved significantly. There was no change in thyroid function tests. Two minor complications (transient voice change) were found. The multiple linear regression analysis showed that the internal component of the nodules significantly related to the VRR during the 3-month follow-up (ß = 23.00; 95%CI (7.59-38.45)). CONCLUSION: RFA was demonstrated as a safe and effective option for benign thyroid nodules treatment. It can be used as an alternative treatment with encouraging results.

16.
ACS Appl Mater Interfaces ; 13(29): 35046-35053, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34236166

RESUMEN

Giant piezoresistive effect enables the development of ultrasensitive sensing devices to address the increasing demands from hi-tech applications such as space exploration and self-driving cars. The discovery of the giant piezoresistive effect by optoelectronic coupling leads to a new strategy for enhancing the sensitivity of mechanical sensors, particularly with light from light-emitting diodes (LEDs). This paper reports on the piezoresistive effect in a 3C-SiC/Si heterostructure with a bonded LED that can reach a gauge factor (GF) as high as 18 000. This value represents an approximately 1000 times improvement compared to the configuration without a bonded LED. This GF is one of the highest GFs reported to date for the piezoresistive effect in semiconductors. The generation of carrier concentration gradient in the top thin 3C-SiC film under illumination from the LED coupling with the tuning current contributes to the modulation of the piezoresistive effect in a 3C-SiC/Si heterojunction. In addition, the feasibility of using different types of LEDs as the tools for modulating the piezoresistive effect is investigated by evaluating lateral photovoltage and photocurrent under LED's illumination. The generated lateral photovoltage and photocurrent are as high as 14 mV and 47.2 µA, respectively. Recent technologies for direct bonding of micro-LEDs on a Si-based device and the discovery reported here may have a significant impact on mechanical sensors.

17.
Lab Chip ; 21(9): 1779-1787, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33730135

RESUMEN

Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles. The concept can be beneficial to pulmonary nano-medicine delivery since the mist of nanoparticles is migrated without any restriction of either the collector or the assistance of external flow, but is pretty simple in designing and manufacturing devices.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Electricidad , Tamaño de la Partícula
18.
CNS Neurosci Ther ; 27(2): 149-162, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352000

RESUMEN

BACKGROUND: Mild cognitive impairment (MCI) is a neurocognitive state between normal cognitive aging and dementia, with evidence of neuropsychological changes but insufficient functional decline to warrant a diagnosis of dementia. Individuals with MCI are at increased risk for progression to dementia; and an appreciable proportion display neuropsychiatric symptoms (NPS), also a known risk factor for dementia. Cerebrovascular disease (CVD) is thought to be an underdiagnosed contributor to MCI/dementia. The Ginkgo biloba extract, EGb 761® , is increasingly being used for the symptomatic treatment of cognitive disorders with/without CVD, due to its known neuroprotective effects and cerebrovascular benefits. AIMS: To present consensus opinion from the ASian Clinical Expert group on Neurocognitive Disorders (ASCEND) regarding the role of EGb 761® in MCI. MATERIALS & METHODS: The ASCEND Group reconvened in September 2019 to present and critically assess the current evidence on the general management of MCI, including the efficacy and safety of EGb 761® as a treatment option. RESULTS: EGb 761® has demonstrated symptomatic improvement in at least four randomized trials, in terms of cognitive performance, memory, recall and recognition, attention and concentration, anxiety, and NPS. There is also evidence that EGb 761® may help delay progression from MCI to dementia in some individuals. DISCUSSION: EGb 761® is currently recommended in multiple guidelines for the symptomatic treatment of MCI. Due to its beneficial effects on cerebrovascular blood flow, it is reasonable to expect that EGb 761® may benefit MCI patients with underlying CVD. CONCLUSION: As an expert group, we suggest it is clinically appropriate to incorporate EGb 761® as part of the multidomain intervention for MCI.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/epidemiología , Manejo de la Enfermedad , Extractos Vegetales/uso terapéutico , Asia/epidemiología , Disfunción Cognitiva/diagnóstico , Ginkgo biloba , Humanos , Estudios Multicéntricos como Asunto/métodos , Estudios Multicéntricos como Asunto/normas , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Resultado del Tratamiento
19.
Adv Sci (Weinh) ; 7(21): 2001294, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33173726

RESUMEN

Semiconductor nanowires are widely considered as the building blocks that revolutionized many areas of nanosciences and nanotechnologies. The unique features in nanowires, including high electron transport, excellent mechanical robustness, large surface area, and capability to engineer their intrinsic properties, enable new classes of nanoelectromechanical systems (NEMS). Wide bandgap (WBG) semiconductors in the form of nanowires are a hot spot of research owing to the tremendous possibilities in NEMS, particularly for environmental monitoring and energy harvesting. This article presents a comprehensive overview of the recent progress on the growth, properties and applications of silicon carbide (SiC), group III-nitrides, and diamond nanowires as the materials of choice for NEMS. It begins with a snapshot on material developments and fabrication technologies, covering both bottom-up and top-down approaches. A discussion on the mechanical, electrical, optical, and thermal properties is provided detailing the fundamental physics of WBG nanowires along with their potential for NEMS. A series of sensing and electronic devices particularly for environmental monitoring is reviewed, which further extend the capability in industrial applications. The article concludes with the merits and shortcomings of environmental monitoring applications based on these classes of nanowires, providing a roadmap for future development in this fast-emerging research field.

20.
Biosens Bioelectron ; 166: 112460, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32862846

RESUMEN

Respiration signals are a vital sign of life. Monitoring human breath provides critical information for health assessment, diagnosis, and treatment for respiratory diseases such as asthma, chronic bronchitis, and emphysema. Stretchable and wearable respiration sensors have recently attracted considerable interest toward monitoring physiological signals in the era of real time and portable healthcare systems. This review provides a snapshot on the recent development of stretchable sensors and wearable technologies for respiration monitoring. The article offers the fundamental guideline on the sensing mechanisms and design concepts of stretchable sensors for detecting vital breath signals such as temperature, humidity, airflow, stress and strain. A highlight on the recent progress in the integration of variable sensing components outlines feasible pathways towards multifunctional and multimodal sensor platforms. Structural designs of nanomaterials and platforms for stretchable respiration sensors are reviewed.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...