Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38543179

Glutamate excitotoxicity and oxidative stress represent two major pathological mechanisms implicated in retinal disorders. In Diabetic Retinopathy (DR), oxidative stress is correlated to NADPH oxidase (NOX), a major source of Reactive Oxygen Species (ROS), and glutamate metabolism impairments. This study investigated the role of NOX2 and the novel NOX2 inhibitor, GLX7013170, in two models of a) retinal AMPA excitotoxicity [AMPA+GLX7013170 (10-4 M, intravitreally)] and b) early-stage DR paradigm (ESDR), GLX7013170: 14-day therapeutic treatment (topically, 20 µL/eye, 10 mg/mL (300 × 10-4 M), once daily) post-streptozotocin (STZ)-induced DR. Immunohistochemical studies for neuronal markers, nitrotyrosine, micro/macroglia, and real-time PCR, Western blot, and glutamate colorimetric assays were conducted. Diabetes increased NOX2 expression in the retina. NOX2 inhibition limited the loss of NOS-positive amacrine cells and the overactivation of micro/macroglia in both models. In the diabetic retina, GLX7013170 had no effect on retinal ganglion cell axons, but reduced oxidative damage, increased Bcl-2, reduced glutamate levels, and partially restored excitatory amino acid transporter (EAAT1) expression. These results suggest that NOX2 in diabetes is part of the triad, oxidative stress, NOX, and glutamate excitotoxicity, key players in the induction of DR. GLX7013170 is efficacious as a neuroprotective/anti-inflammatory agent and a potential therapeutic in retinal diseases, including ESDR.

2.
Diabetes ; 72(5): 638-652, 2023 05 01.
Article En | MEDLINE | ID: mdl-36821829

NADPH oxidases (NOXs) are major players in generating reactive oxygen species (ROS) and are implicated in various neurodegenerative ocular pathologies. The aim of this study was to investigate the role of a NOX4 inhibitor (GLX7013114) in two in vivo, experimental streptozotocin (STZ) paradigms depicting the early events of diabetic retinopathy (DR). Animals in the diabetic treated group received GLX7013114 topically (20 µL/eye, 10 mg/mL, once daily) for 14 days (paradigm A: preventive) and 7 days (paradigm B: treated) at 48 h and 4 weeks after STZ injection, respectively. Several methodologies were used (immunohistochemistry, Western blot, real-time PCR, ELISA, pattern electroretinography [PERG]) to assess the diabetes-induced early events of DR, namely oxidative stress, neurodegeneration, and neuroinflammation, and the effect of GLX7013114 on the diabetic insults. GLX7013114, administered as eye drops (paradigms A and B), was beneficial in treating the oxidative nitrative stress, activation of caspase-3 and micro- and macroglia, and attenuation of neuronal markers. It also attenuated the diabetes-induced increase in vascular endothelial growth factor, Evans blue dye leakage, and proinflammatory cytokine (TNF-α protein, IL-1ß/IL-6 mRNA) levels. PERG amplitude values suggested that GLX7013114 protected retinal ganglion cell function (paradigm B). This study provides new findings regarding the pharmacological profile of the novel NOX4 inhibitor GLX7013114 as a promising therapeutic candidate for the treatment of the early stage of DR. ARTICLE HIGHLIGHTS: NADPH oxidases (NOXs) are implicated in the early pathological events of diabetic retinopathy (DR). The NOX4 inhibitor GLX7013114, topically administered, reduced oxidative damage and apoptosis in the rat streptozotocin model of DR. GLX7013114 protected retinal neurons and retinal ganglion cell function and reduced the expression of pro-inflammatory cytokines in the diabetic retina. GLX7013114 diminished the diabetes-induced increase in vascular endothelial growth factor levels and Evans blue dye leakage in retinal tissue. GLX7013114 exhibits neuroprotective, anti-inflammatory, and vasculoprotective properties that suggest it may have a role as a putative therapeutic for the early events of DR.


Diabetes Mellitus , Diabetic Retinopathy , Rats , Animals , Diabetic Retinopathy/metabolism , Evans Blue/metabolism , Evans Blue/pharmacology , Evans Blue/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Streptozocin/pharmacology , Retina/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology , NADPH Oxidases/therapeutic use , Cytokines/metabolism , Diabetes Mellitus/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism
3.
Neurochem Int ; 142: 104907, 2021 01.
Article En | MEDLINE | ID: mdl-33220388

Cannabinoids have been shown to protect the retina from ischemic/excitotoxic insults. The aim of the present study was to investigate the neuroprotective and anti-inflammatory properties of the synthetic cannabinoid (R)-WIN55,212-2 (CB1/CB2 receptor agonist) when administered acutely or subchronically in control and AMPA treated retinas. Sprague-Dawley rats were intravitreally administered (acutely) with vehicle or AMPA, in the absence or presence of (R)-WIN55,212-2 (10-7-10-4M) alone or in combination with AM251 [CB1 receptor antagonist/inverse agonist,10-4M] and AM630 (CB2 receptor antagonist,10-4M). In addition, AMPA was co-administered with the racemic (R,S)-WIN55,212 (10-4Μ). (R)-WIN55,212-2 was also administered subchronically (25,100 µg/kg,i.p.,4d) in control and AMPA treated rats. Immunohistochemical studies were performed using antibodies against the CB1R, and retinal markers for retinal neurons (brain nitric oxide synthetase, bNOS) and microglia (ionized calcium binding adaptor molecule 1, Iba1). ELISA assay was employed to assess TNFα levels in AMPA treated retinas. Intravitreal administration of (R)-WIN55,212-2 reversed the AMPA induced loss of bNOS expressing amacrine cells, an effect that was blocked by both AM251 and AM630. (R,S)WIN55,212 had no effect. (R)-WIN55,212-2 also reduced a) the AMPA induced activation of microglia, by activating CB2 receptors that were shown to be colocalized with Iba1+ reactive microglial cells, and b) TNFα levels in retina. (R)-WIN55,212-2 administered subchronically led to the downregulation of CB1 receptors at the high dose of 100 µg/kg(i.p.), and to the attenuation of the WIN55,212-2 induced neuroprotection of amacrine cells. At the same dose, (R)-WIN55,212-2 did not attenuate the AMPA induced increase in the number of reactive microglia cells, suggesting CB2 receptor downregulation under subchronic conditions. This study provides new findings regarding the role of CB1 and CB2 receptor activation by the synthetic cannabinoid (R)-WIN55,212-2, administered acutely or sub-chronically, on neuron viability and microglia activation in healthy and diseased retina.


Anti-Inflammatory Agents/administration & dosage , Benzoxazines/administration & dosage , Morpholines/administration & dosage , Naphthalenes/administration & dosage , Neuroprotective Agents/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Retina/metabolism , Animals , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Male , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Retina/drug effects , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
4.
Exp Eye Res ; 200: 108232, 2020 11.
Article En | MEDLINE | ID: mdl-32916159

NADPH oxidases (NOX) are activated in ischemic conditions leading to increases in reactive oxygen species (ROS) and neurotoxicity. The aim of the present study was to investigate the role of NOX in the development of retinal pathologies, associated with excitotoxicity and the evaluation of NOX inhibitors as putative therapeutic agents. Sprague-Dawley rats were used for the induction of the in vivo retinal model of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA) excitotoxicity. Rats were intravitreally administered with PBS, AMPA (42 nmoles) or AMPA + NOX inhibitors, VAS2870 (pan-NOX inhibitor, 10-6-10-4 M), ML171 (NOX1 inhibitor, 10-5, 10-4 M), and GLX7013114 (NOX4 inhibitor, 10-4 M). Immunohistochemical studies were performed using antibodies raised against nitrotyrosine, a ROS/oxidative stress marker, bNOS, a neuronal marker for nitric oxide synthase and the macro and microglia markers, glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1, respectively. VAS2870 and ML171 showed neuroprotective and anti-inflammatory actions reversing the AMPA induced reduction of bNOS expressing amacrine cells and attenuating macro/microglial activation. GLX7013114 (10-4 M) did not protect bNOS expressing amacrine cells, but it did attenuate the AMPA induced increase in nitrotyrosine positive cells and activation of glial cells. These results suggest that NOX1, NOX4 and possibly NOX2 (due to the actions of VAS2870) play an important role in the pathophysiology of the retina and that NOX inhibitors are putative neuroprotective and anti-inflammatory agents against retinal abnormalities caused by excitotoxicity.


Benzoxazoles/pharmacology , Ischemia/drug therapy , NADPH Oxidase 4/antagonists & inhibitors , Retina/metabolism , Retinal Diseases/drug therapy , Triazoles/pharmacology , Animals , Disease Models, Animal , Female , Immunohistochemistry , Ischemia/chemically induced , Ischemia/metabolism , Male , Microglia/metabolism , NADPH Oxidase 4/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Retinal Diseases/chemically induced , Retinal Diseases/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
...