Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533072

RESUMEN

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

3.
Commun Biol ; 6(1): 1197, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001233

RESUMEN

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.


Asunto(s)
Rauwolfia , Rauwolfia/genética , Rauwolfia/metabolismo , Monoterpenos , Alcaloides Indólicos/metabolismo
4.
Front Physiol ; 14: 1207542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614755

RESUMEN

Ovulation in European eel is induced by injection of 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) as the maturation-inducing hormone (MIH). Female eels need to ovulate within 18 h after injection to release good quality eggs. Progesterone (P), as an upstream precursor of DHP, may promote endogenous DHP production and improve egg quality. The purpose of this study was therefore to compare treatment of P with DHP on batch level, in vitro, to determine dose-response effects, and in vivo, at a single dose. For the in vitro experiment, ovarian tissue was extracted and placed in culture plates containing hormone-free medium and media supplemented with the treatment: DHP at 1, 10 and 100 ng mL-1, or P at 10, 100 and 1,000 ng mL-1. At the start of incubation, the folliculated oocytes were sampled for histology, microscopy and qPCR. After incubation for 12 and 18 h, the oocytes were sampled for microscopy and qPCR analysis. For the in vivo experiment, females were either injected with DHP or P at a dose of 2 mg kg-1 to assess their effects on ovulation and reproductive success. At the moment of release, eggs were sampled for RNA sequencing to compare effects of DHP and P on the expression of genes involved in egg quality aspects. Remaining eggs were fertilized and larval viability was recorded. Both DHP and P were able to induce GVBD (DHP at 10 and 100 ng mL-1, P at 100 and 1,000 ng mL-1) in vitro. Expression of genes involved in oocyte maturation and ovulation was similar in vitro for both DHP and P treatments. Regarding the in vivo results, RNAseq results reflected similar DHP and P effects on the expression of genes involved in egg quality aspects. Females injected with either DHP or P ovulated, released eggs, and were equally able to produce larvae without any differences in reproductive success. Our results support the conclusion that DHP and P work equally well in vitro and in vivo. P is more attractive to apply as the price is 3,000 times lower than the price of DHP.

5.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200869

RESUMEN

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.


Asunto(s)
Vinca , Monoterpenos , Filogenia , Evolución Biológica , Fenotipo
6.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36300641

RESUMEN

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Asunto(s)
Plantas Medicinales , Voacanga , Plantas Medicinales/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Semillas , Genoma de Planta
7.
Microorganisms ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744652

RESUMEN

Ca. Neoehrlichia mikurensis is widely prevalent in I. ricinus across Europe and has been associated with human disease. However, diagnostic modalities are limited, and much is still unknown about its biology. Here, we present the first complete Ca. Neoehrlichia mikurensis genomes directly derived from wildlife reservoir host tissues, using both long- and short-read sequencing technologies. This pragmatic approach provides an alternative to obtaining sufficient material from clinical cases, a difficult task for emerging infectious diseases, and to expensive and challenging bacterial isolation and culture methods. Both genomes exhibit a larger chromosome than the currently available Ca. Neoehrlichia mikurensis genomes and expand the ability to find new targets for the development of supportive laboratory diagnostics in the future. Moreover, this method could be utilized for other tick-borne pathogens that are difficult to culture.

8.
Pathogens ; 11(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215209

RESUMEN

Philasterides dicentrarchi is a scuticociliate that causes high mortalities in farmed fish. Although vaccination is an effective method to prevent scuticociliatosis caused by the homologous serotype, a universal vaccine has not been developed yet. Many compounds have been shown to be toxic to this ciliate species; moreover, most of them are toxic to aquatic life and cannot be used to prevent the disease. We have evaluated the toxicity to P. dicentrarchi of several compounds of natural origin to be used to reduce parasite levels in the seawater. Ciliates were exposed to several compound concentrations, and the mortality was determined at several incubation times. Tomatine, plumbagin and 2',4'-dihydroxychalcone displayed the highest anticiliate activity, with a dose-dependent response. The effects of these compounds on the EPC cell line were also evaluated, finding that 2',4'-dihydroxychalcone displayed the lowest toxicity to fish cells. At 7.54 µM, 2',4'-dihydroxychalcone inhibited 50% parasite growth but only killed about 10% of EPC cells after 24 h incubation. Finally, we evaluated the toxicity of Pseudomonas H6 surfactant (PS) to P. dicentrarchi, finding that PS was toxic to the ciliate but showed lower toxicity to EPC cells. At a concentration of 7.8 µg/mL (LC50 for the ciliate after 3 h incubation), PS killed 14.9% of EPC cells. We conclude that 2',4'-dihydroxychalcone, and PS could be used to reduce parasite levels in seawater, thus decreasing the risk of scuticociliatosis infection in cultured fish.

9.
F1000Res ; 11: 1541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761838

RESUMEN

The Madagascar periwinkle, Catharanthus roseus, belongs to the Apocynaceae family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the C. roseus genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads. This more contiguous assembly consists of 173 scaffolds with a total length of 581.128 Mb and an N50 of 12.241 Mb. Using publicly available RNAseq data, 21,061 protein coding genes were predicted and functionally annotated. A total of 42.87% of the genome was annotated as transposable elements, most of them being long-terminal repeats. Together with the increasing access to MIA-producing plant genomes, this updated version should ease evolutionary studies leading to a better understanding of MIA biosynthetic pathway evolution.


Asunto(s)
Catharanthus , Plantas Medicinales , Catharanthus/genética , Catharanthus/metabolismo , Genoma de Planta , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
10.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34557910

RESUMEN

The genus Spodoptera (Lepidoptera: Noctuidae) includes some of the most infamous insect pests of cultivated plants including Spodoptera frugiperda, Spodoptera litura, and Spodoptera exigua. To effectively develop targeted pest control strategies for diverse Spodoptera species, genomic resources are highly desired. To this aim, we provide the genome assembly and developmental transcriptome comprising all major life stages of S. exigua, the beet armyworm. Spodoptera exigua is a polyphagous herbivore that can feed on > 130 host plants, including several economically important crops. The 419 Mb beet armyworm genome was sequenced from a female S. exigua pupa. Using a hybrid genome sequencing approach (Nanopore long-read data and Illumina short read), a high-quality genome assembly was achieved (N50 = 1.1 Mb). An official gene set (18,477 transcripts) was generated by automatic annotation and by using transcriptomic RNA-seq datasets of 18 S. exigua samples as supporting evidence. In-depth analyses of developmental stage-specific expression combined with gene tree analyses of identified homologous genes across Lepidoptera genomes revealed four potential genes of interest (three of them Spodoptera-specific) upregulated during first- and third-instar larval stages for targeted pest-outbreak management. The beet armyworm genome sequence and developmental transcriptome covering all major developmental stages provide critical insights into the biology of this devastating polyphagous insect pest species worldwide. In addition, comparative genomic analyses across Lepidoptera significantly advance our knowledge to further control other invasive Spodoptera species and reveals potential lineage-specific target genes for pest control strategies.


Asunto(s)
Beta vulgaris , Animales , Femenino , Perfilación de la Expresión Génica , Larva , Control de Plagas , Pupa , Spodoptera/genética
11.
Animals (Basel) ; 11(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201077

RESUMEN

In eels, large variations in larval mortality exist, which would impede the viable production of juvenile glass eels in captivity. The transcriptome of European eel larvae was investigated to identify physiological pathways and genes that show differential regulation between non-viable vs. viable larvae. Expression of genes involved in inflammation and host protection was higher, suggesting that non-viable larvae suffered from microbial infection. Expression of genes involved in osmoregulation was also higher, implying that non-viable larvae tried to maintain homeostasis by strong osmoregulatory adaptation. Expression of genes involved in myogenesis, neural, and sensory development was reduced in the non-viable larvae. Expression of the major histocompatibility complex class-I (mhc1) gene, M-protein (myom2), the dopamine 2B receptor (d2br), the melatonin receptor (mtr1), and heat-shock protein beta-1 (hspb1) showed strong differential regulation and was therefore studied in 1, 8, and 15 days post-hatch (dph) larvae by RT-PCR to comprehend the roles of these genes during ontogeny. Expression patterning of these genes indicated the start of active swimming (8 dph) and feed searching behavior (15 dph) and confirmed immunocompetence immediately after hatching. This study revealed useful insights for improving larval survival by microbial control and salinity reduction.

12.
Front Immunol ; 12: 645607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777043

RESUMEN

Ceratothoa oestroides (Cymothoidea, Isopoda) is a generalist crustacean parasite that negatively affects the economic sustainability of European sea bass (Dicentrarchus labrax) aquaculture in the North-East Mediterranean. While mortalities are observed in fry and fingerlings, infection in juvenile and adult fish result in approximately 20% growth delay. A transcriptomic analysis (PCR array, RNA-Seq) was performed on organs (tongue, spleen, head kidney, and liver) from infected vs. Ceratothoa-free sea bass fingerlings. Activation of local and systemic immune responses was detected, particularly in the spleen, characterized by the upregulation of cytokines (also in the tongue), a general reshaping of the immunoglobulin (Ig) response and suppression of T-cell mediated responses. Interestingly, starvation and iron transport and metabolism genes were strongly downregulated, suggesting that the parasite feeding strategy is not likely hematophagous. The regulation of genes related to growth impairment and starvation supported the growth delay observed in infected animals. Most differentially expressed (DE) transcripts were exclusive of a specific organ; however, only in the tongue, the difference between infected and uninfected fish was significant. At the attachment/feeding site, the pathways involved in muscle contraction and intercellular junction were the most upregulated, whereas the pathways involved in fibrosis (extracellular matrix organization, collagen formation, and biosynthesis) were downregulated. These results suggest that parasite-inflicted damage is successfully mitigated by the host and characterized by regenerative processes that prevail over the reparative ones.


Asunto(s)
Lubina , Enfermedades de los Peces , Riñón Cefálico , Isópodos/inmunología , Hígado , Enfermedades Parasitarias en Animales , Animales , Lubina/inmunología , Lubina/parasitología , Citocinas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Perfilación de la Expresión Génica , Riñón Cefálico/inmunología , Riñón Cefálico/parasitología , Hígado/inmunología , Hígado/parasitología , Mar Mediterráneo , Enfermedades Parasitarias en Animales/inmunología , Enfermedades Parasitarias en Animales/parasitología
13.
Vet Immunol Immunopathol ; 234: 110217, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647857

RESUMEN

The ectoparasite protozoan Amyloodinium ocellatum (AO) is the causative agent of amyloodiniosis in European seabass (ESB, Dicentrarchus labrax). There is a lack of information about basic molecular immune response mechanisms of ESB during AO infestation. Therefore, to compare gene expression between experimental AO-infested ESB tissues and uninfested ESB tissues (gills and head kidney) RNA-seq was adopted. The RNA-seq revealed multiple differentially expressed genes (DEG), namely 679 upregulated genes and 360 downregulated genes in the gills, and 206 upregulated genes and 170 downregulated genes in head kidney. In gills, genes related to the immune system (perforin, CC1) and protein binding were upregulated. Several genes involved in IFN related pathways were upregulated in the head kidney. Subsequently, to validate the DEG from amyloodiniosis, 26 ESB (mean weight 14 g) per tank in triplicate were bath challenged for 2 h with AO (3.5 × 106/tank; 70 dinospores/mL) under controlled conditions (26-28 °C and 34‰ salinity). As a control group (non-infested), 26 ESB per tank in triplicate were also used. Changes in the expression of innate immune genes in gills and head kidney at 2, 3, 5, 7 and 23 dpi were analysed using real-time PCR. The results indicated that the expression of cytokines (CC1, IL-8) and antimicrobial peptide (Hep) were strongly stimulated and reached a peak at 5 dpi in the early infestation stage, followed by a gradual reduction in the recovery stage (23 dpi). Noticeably, the immunoglobulin (IgM) expression was higher at 23 dpi compared to 7 dpi. Furthermore, in-situ hybridization showed positive signals of CC1 mRNA in AO infested gills compared to the control group. Altogether, chemokines were involved in the immune process under AO infestation and this evidence allows a better understanding of the immune response in European seabass during amyloodiniosis.


Asunto(s)
Lubina/inmunología , Dinoflagelados/inmunología , Enfermedades de los Peces/inmunología , Expresión Génica , Inmunidad Innata/genética , Infecciones Protozoarias en Animales/inmunología , Animales , Branquias/parasitología , Riñón Cefálico/inmunología , Riñón Cefálico/parasitología , Inmunidad Innata/inmunología , ARN Mensajero/genética
14.
Front Physiol ; 11: 610049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364981

RESUMEN

A longer on-land rearing period of Gilthead seabream Sparus aurata before transfer to sea-cages would allow the farmer to benefit from exercise-enhanced growth, resilience, and robustness as induced by increasing water flow in the tanks. In this study, the physiological effects of flow-conditioning were investigated by subjecting large groups of experimental fish to minimal flow or to flow regimes inducing swimming exercise at 1 or 2 body length (BL) s-1 for a period of 8 months (February-October) in 1,500 L tanks. Fish representing the three treatment groups were then used for: (1) a stress challenge netting test and plasma cortisol measurement (baseline, peaking, and recovery levels), (2) blood plasma measurements of glucose, triglycerides, lactate, cholesterol, growth hormone (GH), and insulin-like growth factor 1 (IGF1), and (3) heart and muscle gene expression of the GH and IGF1 receptors and the muscle transcriptome by deep RNA sequencing (RNAseq). Fish size after 8 months of flow conditioning was 92 ± 27 g body weight (BW) for fish under minimal flow, 106 ± 24 g BW (+15%) at 1 BL s-1, and 125 ± 27 g BW (+36%) at 2 BL s-1. Flow conditioning at 1 BL s-1 provided optimal conditions for growth and uniformity, but also stress (lowest baseline plasma cortisol), robustness (higher condition factor and larger hearts), and energy mobilization (increased plasma glucose). Although flow enhanced growth linearly with swimming speed, also the percentage of lordotic fish increased with exercise, particularly high for swimming at 2 BL s-1. The absence of important differences in plasma GH and IGF1, and expression levels of their receptors in heart and white skeletal muscle, indicated that other factors may be involved in growth enhancement. RNAseq of the white skeletal muscle showed upregulated expression of genes involved in muscle contraction, muscle development and its molecular regulation, and immune genes that may play a role in the muscle repair mechanism. An exercise regime of swimming at 1 BL s-1 can be considered as optimal for farming robust seabream although the increase of skeletal deformities should be avoided.

15.
Biology (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076342

RESUMEN

The present study analyses the interactions between Philasterides dicentrarchi (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot Scophthalmus maximus during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 107 ciliates and at 12 and 48 hpi in turbot injected ip with 105 ciliates. Numerous genes were differentially expressed (DE) in P. dicentrarchi, relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in P. dicentrarchi infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, P. dicentrarchi strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill P. dicentrarchi during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., arachidonate 15-lipoxygenase) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in P. dicentrarchi during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.

16.
Fish Physiol Biochem ; 46(5): 1653-1664, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32583280

RESUMEN

Exposure to high temperatures can lead to thermotolerance in fish, which is hypothesized to potentially improve post-release survival in species under restocking programs, like Atlantic sturgeon. The aim of this study was to determine whether Atlantic sturgeon juveniles exposed to a 4-week temperature treatment respond differently to a subsequent heat shock than juveniles exposed to heat shock for the first time (naive fish). Response to heat shock was assessed by mapping the liver transcriptome. In total, 838 unique contigs were differentially expressed between the trained and the control group (592 downregulated, 261 upregulated, and 15 down- or upregulated, depending on the condition), corresponding to genes involved in the response to heat, tissue damage, proteolysis, and metabolism. Temperature-trained fish showed 2-4-fold fewer dysregulated contigs than naive fish, indicating their ability to maintain and recover homeostasis faster. During heat shock, hspc1 was upregulated in both experimental groups, while hspa1 and dnaja4 were exclusively upregulated in the control. Overall, compensatory mechanisms were observed in addition to the heat shock response. Only two genes, fgg and apnl, were upregulated at nearly all timepoints in both groups. Peptidases were more strongly downregulated in control fish, which also showed a reduction in lipid metabolism during recovery. Keratins, pck1, gadd45ga, and gadd45gb were differentially expressed between trained and control fish, and due to their roles in tissue protection and ER stress reduction, they might be responsible for the maintenance of the transcriptional homeostasis observed in trained fish.


Asunto(s)
Adaptación Fisiológica , Peces/fisiología , Regulación de la Expresión Génica/fisiología , Respuesta al Choque Térmico , Homeostasis , Animales
17.
Fish Shellfish Immunol ; 93: 965-976, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31419536

RESUMEN

High infection levels due to third-stage larvae of the anisakid nematode Contracaecum osculatum have been documented in cod from the eastern part of the Baltic sea during the latest decades. The nematode larvae mainly infect the liver of Baltic cod and prevalence of infection has reached 100% with a mean intensity up to 80 parasites per host in certain areas and size classes. Low condition factors of the cod have been observed concomitant with the rise in parasite abundance suggesting a parasitic effect on growth parameters. To investigate any association between parasite infection and physiological status of the host we performed a comparative transcriptomic analysis of liver obtained from C. osculatum infected and non-infected cod. A total of 47,025 predicted gene models showed expression in cod liver and sequences corresponding to 2084 (4.43%) unigenes were differentially expressed in infected liver when compared to non-infected liver. Of the differentially expressed unigenes (DEGs) 1240 unigenes were up-regulated while 844 unigenes were down-regulated. The Gene Ontology (GO) enrichment analysis showed that 1304 DEGs were represented in cellular process and single-organism process, cell and cell part, binding and catalytic activity. As determined by the Kyoto Encyclopedia of Gene and Genomes (KEGG) Pathways analysis, 454 DEGs were involved in 138 pathways. Ninety-seven genes were related to metabolic pathways including carbohydrate, lipid, and amino acid metabolism. Thirteen regulated genes were playing a role in immune response such as Toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signalling and thirty-six genes were associated with growth processes. This indicates that the nematode infection in Baltic cod may affect on molecular mechanisms involving metabolism, immune function and growth.


Asunto(s)
Enfermedades de los Peces/inmunología , Gadus morhua , Hígado/metabolismo , Infecciones por Rhabditida/veterinaria , Rabdítidos/fisiología , Transcriptoma/inmunología , Animales , Enfermedades de los Peces/parasitología , Gadus morhua/crecimiento & desarrollo , Perfilación de la Expresión Génica/veterinaria , Larva/crecimiento & desarrollo , Larva/fisiología , Hígado/parasitología , Rabdítidos/crecimiento & desarrollo , Infecciones por Rhabditida/inmunología , Infecciones por Rhabditida/parasitología
18.
Ecotoxicol Environ Saf ; 181: 559-571, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31238190

RESUMEN

Warfarin is the most worldwide used anticoagulant drug and rodenticide. Since it crosses placental barrier it can induce warfarin embryopathy (WE), a fetal mortality in neonates characterized by skeletal deformities in addition to brain hemorrhages. Although the effects of warfarin exposure in aquatic off target species were already described, the particular molecular toxicological mechanisms during early development are still unclear. Here, we used zebrafish (Danio rerio) to describe and compare the developmental effects of warfarin exposure (0, 15.13, 75.68 and 378.43 mM) on two distinct early developmental phases (embryos and eleuthero-embryos). Although exposure to both developmental phases induced fish mortality, only embryos exposed to the highest warfarin level exhibited features mimicking mammalian WE, e.g. high mortality, higher incidence of hemorrhages and altered skeletal development, among other effects. To gain insights into the toxic mechanisms underlying warfarin exposure, the transcriptome of embryos exposed to warfarin was explored through RNA-Seq and compared to that of control embryos. 766 differentially expressed (564 up- and 202 down-regulated) genes were identified. Gene Ontology analysis revealed particular cellular components (cytoplasm, extracellular matrix, lysosome and vacuole), biological processes (mainly amino acid and lipid metabolism and response to stimulus) and pathways (oxidative stress response and apoptosis signaling pathways) being significantly overrepresented in zebrafish embryos upon warfarin exposure. Protein-protein interaction further evidenced an altered redox system, blood coagulation and vasculogenesis, visual phototransduction and collagen formation upon warfarin exposure. The present study not only describes for the first time the WE in zebrafish, it provides new insights for a better risk assessment, and highlights the need for programming the rat eradication actions outside the fish spawning season to avoid an impact on off target fish community. The urge for the development of more species-specific anticoagulants for rodent pest control is also highlighted.


Asunto(s)
Anomalías Inducidas por Medicamentos/metabolismo , Anticoagulantes/toxicidad , Hueso Nasal/anomalías , Rodenticidas/toxicidad , Warfarina/efectos adversos , Warfarina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anomalías Inducidas por Medicamentos/genética , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Humanos , Hueso Nasal/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transcriptoma , Warfarina/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Sci Rep ; 9(1): 7911, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31114003

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

20.
BMC Genomics ; 20(1): 200, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30866816

RESUMEN

BACKGROUND: Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis. RESULTS: Using Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen. CONCLUSIONS: Contrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.


Asunto(s)
Proteínas de Peces/genética , Helmintiasis Animal/genética , Platelmintos/patogenicidad , Dorada/parasitología , Análisis de Secuencia de ARN/veterinaria , Animales , Autofagia , Proliferación Celular , Explotaciones Pesqueras , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Branquias/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Interacciones Huésped-Parásitos , Hígado/parasitología , Dorada/genética , Bazo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...