Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 11: 570588, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192566

RESUMEN

Kv7.2 subunits encoded by the KCNQ2 gene constitute a critical molecular component of the M-current, a subthreshold voltage-gated potassium current controlling neuronal excitability by dampening repetitive action potential firing. Pathogenic loss-of-function variants in KCNQ2 have been linked to epilepsy since 1998, and there is ample functional evidence showing that dysfunction of the channel indeed results in neuronal hyperexcitability. The recent description of individuals with severe developmental delay with or without seizures due to pathogenic variants in KCNQ2 (KCNQ2-encephalopathy) reveals that Kv7.2 channels also have an important role in neurodevelopment. Kv7.2 channels are expressed already very early in the developing brain when key developmental processes such as proliferation, differentiation, and synaptogenesis play a crucial role in brain morphogenesis and maturation. In this review, we will discuss the available evidence for a role of Kv7.2 channels in these neurodevelopmental processes, focusing in particular on insights derived from KCNQ2-related human phenotypes, from the spatio-temporal expression of Kv7.2 and other Kv7 family member, and from cellular and rodent models, highlighting critical gaps and research strategies to be implemented in the future. Lastly, we propose a model which divides the M-current activity in three different developmental stages, correlating with the cell characteristics during these particular periods in neuronal development, and how this can be linked with KCNQ2-related disorders. Understanding these mechanisms can create opportunities for new targeted therapies for KCNQ2-encephalopathy.

2.
Mar Drugs ; 17(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731399

RESUMEN

There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.


Asunto(s)
Alcaloides/farmacología , Benzofuranos/farmacología , Isoquinolinas/farmacología , Convulsiones/tratamiento farmacológico , Pez Cebra/metabolismo , Animales , Anticonvulsivantes/farmacología , Aspergillus/metabolismo , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Epilepsia/tratamiento farmacológico , Larva/metabolismo , Masculino , Ratones , Mar del Norte
3.
Sci Rep ; 9(1): 12916, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501497

RESUMEN

Metabotropic glutamate receptors (mGluRs) have been proposed as promising therapeutic targets to correct the dysregulated glutamate signaling, associated with neurodegenerative pathologies. Of all mGluR subtypes, especially mGluR5 acts as a modulator of glutamate-induced excitotoxicity. To study the behavior of mGluR5 following localized excitotoxicity, we utilised a pharmacological model that portrays exacerbated neuronal glutamate release, mediated by the endogenous excitotoxin quinolinic acid (QA). Using longitudinal positron emission tomography (PET) with [18F]FPEB, we investigated cerebral changes in mGluR5 following striatal QA-lesioning. Behavioral tests were executed to monitor motor and cognitive performance. Decreased mGluR5 binding potential (BPND) was found in the affected striatum and globus pallidus of QA-lesioned rats at week 3, and further decreased at week 7, as compared to sham-injected controls. mGluR5 availability in the ipsilateral nucleus accumbens was significantly decreased at 7 weeks post-injection. QA rats performed significantly worse on motor coordination and balance compared to control rats. Correlation analysis indicated a positive correlation between striatal mGluR5 BPND and rotarod performance whereas print width of the unaffected forepaws showed a positive relation with mGluR5 BPND in the contralateral motor cortex. Together, our results suggest decreased mGluR5 availability to be related to excitotoxin-induced neurodegeneration and symptomatology although late stage effects do indicate possible cortical mGluR5-mediated effects on motor behavior.


Asunto(s)
Potenciales Postsinápticos Excitadores , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Conducta Animal , Biomarcadores , Supervivencia Celular , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Tomografía de Emisión de Positrones , Ratas , Receptor del Glutamato Metabotropico 5/genética
4.
Brain ; 142(10): 3009-3027, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504254

RESUMEN

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Asunto(s)
Epilepsia Generalizada/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Secuencia de Aminoácidos/genética , Animales , Niño , Preescolar , Epilepsia Generalizada/fisiopatología , Femenino , Regulación de la Expresión Génica/genética , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Masculino , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/genética
5.
ACS Chem Neurosci ; 9(7): 1652-1662, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29672015

RESUMEN

In search for novel antiseizure drugs (ASDs), the European FP7-funded PharmaSea project used zebrafish embryos and larvae as a drug discovery platform to screen marine natural products to identify promising antiseizure hits in vivo for further development. Within the framework of this project, seven known heterospirocyclic γ-lactams, namely, pseurotin A, pseurotin A2, pseurotin F1, 11- O-methylpseurotin A, pseurotin D, azaspirofuran A, and azaspirofuran B, were isolated from the bioactive marine fungus Aspergillus fumigatus, and their antiseizure activity was evaluated in the larval zebrafish pentylenetetrazole (PTZ) seizure model. Pseurotin A2 and azaspirofuran A were identified as antiseizure hits, while their close chemical analogues were inactive. Besides, electrophysiological analysis from the zebrafish midbrain demonstrated that pseurotin A2 and azaspirofuran A also ameliorate PTZ-induced epileptiform discharges. Next, to determine whether these findings translate to mammalians, both compounds were analyzed in the mouse 6 Hz (44 mA) psychomotor seizure model. They lowered the seizure duration dose-dependently, thereby confirming their antiseizure properties and suggesting activity against drug-resistant seizures. Finally, in a thorough ADMET assessment, pseurotin A2 and azaspirofuran A were found to be drug-like. Based on the prominent antiseizure activity in both species and the drug-likeness, we propose pseurotin A2 and azaspirofuran A as lead compounds that are worth further investigation for the treatment of epileptic seizures. This study not only provides the first evidence of antiseizure activity of pseurotins and azaspirofurans, but also demonstrates the value of the zebrafish model in (marine) natural product drug discovery in general, and for ASD discovery in particular.


Asunto(s)
Anticonvulsivantes/farmacología , Lactamas/farmacología , Pirrolidinonas/farmacología , Compuestos de Espiro/farmacología , Animales , Anticonvulsivantes/química , Anticonvulsivantes/aislamiento & purificación , Aspergillus fumigatus , Encéfalo/efectos de los fármacos , Línea Celular , Descubrimiento de Drogas , Epilepsia Refractaria/tratamiento farmacológico , Estimulación Eléctrica , Humanos , Océano Índico , Lactamas/química , Lactamas/aislamiento & purificación , Masculino , Ratones , Estructura Molecular , Pirrolidinonas/química , Pirrolidinonas/aislamiento & purificación , Distribución Aleatoria , Convulsiones/tratamiento farmacológico , Compuestos de Espiro/química , Compuestos de Espiro/aislamiento & purificación , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...