Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958588

Host jumps are a major factor for the emergence of new fungal pathogens. In the evolution of smut fungi, a putative host jump occurred in Sporisorium reilianum that today exists in two host-adapted formae speciales, the sorghum-pathogenic S. reilianum f. sp. reilianum and maize-pathogenic S. reilianum f. sp. zeae. To understand the molecular host-specific adaptation to maize, we compared the transcriptomes of maize leaves colonized by both formae speciales. We found that both varieties induce many common defense response-associated genes, indicating that both are recognized by the plant as pathogens. S. reilianum f. sp. reilianum additionally induced genes involved in systemic acquired resistance. In contrast, only S. reilianum f. sp. zeae induced expression of chorismate mutases that function in reducing the level of precursors for generation of the defense compound salicylic acid (SA), as well as oxylipin biosynthesis enzymes necessary for generation of the SA antagonist jasmonic acid (JA). In accordance, we found reduced SA levels as well as elevated JA and JA-Ile levels in maize leaves inoculated with the maize-adapted variety. These findings support a model of the emergence of the maize-pathogenic variety from a sorghum-specific ancestor following a recent host jump.


Basidiomycota , Ustilaginales , Zea mays/genetics , Ustilaginales/physiology , Plants , Plant Diseases/microbiology
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article En | MEDLINE | ID: mdl-36012130

The biotrophic fungus Sporisorium reilianum exists in two host-adapted formae speciales that cause head smut in maize (S. reilianum f. sp. zeae; SRZ) and sorghum (S. reilianum f. sp. reilianum; SRS). In sorghum, the spread of SRZ is limited to the leaves. To understand the plant responses to each forma specialis, we determined the transcriptome of sorghum leaves inoculated either with SRS or SRZ. Fungal inoculation led to gene expression rather than suppression in sorghum. SRZ induced a much greater number of genes than SRS. Each forma specialis induced a distinct set of plant genes. The SRZ-induced genes were involved in plant defense mainly at the plasma membrane and were associated with the Molecular Function Gene Ontology terms chitin binding, abscisic acid binding, protein phosphatase inhibitor activity, terpene synthase activity, chitinase activity, transmembrane transporter activity and signaling receptor activity. Specifically, we found an upregulation of the genes involved in phospholipid degradation and sphingolipid biosynthesis, suggesting that the lipid content of the plant plasma membrane may contribute to preventing the systemic spread of SRZ. In contrast, the colonization of sorghum with SRS increased the expression of the genes involved in the detoxification of cellular oxidants and in the unfolded protein response at the endoplasmic reticulum, as well as of the genes modifying the cuticle wax and lipid composition through the generation of alkanes and phytosterols. These results identified plant compartments that may have a function in resistance against SRZ (plasma membrane) and susceptibility towards SRS (endoplasmic reticulum) that need more attention in the future.


Sorghum , Basidiomycota , Edible Grain , Gene Expression Profiling , Lipids , Plant Diseases/microbiology , Sorghum/genetics , Sorghum/microbiology , Transcriptome
...