Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Med ; 25(12): 100947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37534744

RESUMEN

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Asunto(s)
Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Pruebas Genéticas/métodos , Genómica , Exoma/genética , América del Norte
2.
Hum Mutat ; 37(12): 1318-1328, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27633797

RESUMEN

As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Bases de Datos Factuales , Neoplasias Ováricas/genética , Curaduría de Datos , Bases de Datos Factuales/economía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación
3.
Hum Mutat ; 37(1): 127-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26467025

RESUMEN

We developed a rules-based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co-occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re-evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting.


Asunto(s)
Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Variación Genética , Genómica/métodos , Programas Informáticos , Humanos , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Navegador Web
4.
Am J Hum Genet ; 94(3): 462-9, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24530202

RESUMEN

Copy-number variations cause genomic disorders. Triplications, unlike deletions and duplications, are poorly understood because of challenges in molecular identification, the choice of a proper model system for study, and awareness of their phenotypic consequences. We investigated the genomic disorder Charcot-Marie-Tooth disease type 1A (CMT1A), a dominant peripheral neuropathy caused by a 1.4 Mb recurrent duplication occurring by nonallelic homologous recombination. We identified CMT1A triplications in families in which the duplication segregates. The triplications arose de novo from maternally transmitted duplications and caused a more severe distal symmetric polyneuropathy phenotype. The recombination that generated the triplication occurred between sister chromatids on the duplication-bearing chromosome and could accompany gene conversions with the homologous chromosome. Diagnostic testing for CMT1A (n = 20,661 individuals) identified 13% (n = 2,752 individuals) with duplication and 0.024% (n = 5 individuals) with segmental tetrasomy, suggesting that triplications emerge from duplications at a rate as high as ~1:550, which is more frequent than the rate of de novo duplication. We propose that individuals with duplications are predisposed to acquiring triplications and that the population prevalence of triplication is underascertained.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Duplicación de Gen , Alelos , Variaciones en el Número de Copia de ADN , Femenino , Dosificación de Gen , Humanos , Masculino , Repeticiones de Microsatélite , Atrofia Muscular/patología , Hibridación de Ácido Nucleico , Linaje , Fenotipo , Polineuropatías/genética , Recombinación Genética
5.
Mol Genet Genomic Med ; 2(6): 522-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25614874

RESUMEN

We report the frequency, positive rate, and type of mutations in 14 genes (PMP22, GJB1, MPZ, MFN2, SH3TC2, GDAP1, NEFL, LITAF, GARS, HSPB1, FIG4, EGR2, PRX, and RAB7A) associated with Charcot-Marie-Tooth disease (CMT) in a cohort of 17,880 individuals referred to a commercial genetic testing laboratory. Deidentified results from sequencing assays and multiplex ligation-dependent probe amplification (MLPA) were analyzed including 100,102 Sanger sequencing, 2338 next-generation sequencing (NGS), and 21,990 MLPA assays. Genetic abnormalities were identified in 18.5% (n = 3312) of all individuals. Testing by Sanger and MLPA (n = 3216) showed that duplications (dup) (56.7%) or deletions (del) (21.9%) in the PMP22 gene accounted for the majority of positive findings followed by mutations in the GJB1 (6.7%), MPZ (5.3%), and MFN2 (4.3%) genes. GJB1 del and mutations in the remaining genes explained 5.3% of the abnormalities. Pathogenic mutations were distributed as follows: missense (70.6%), nonsense (14.3%), frameshift (8.7%), splicing (3.3%), in-frame deletions/insertions (1.8%), initiator methionine mutations (0.8%), and nonstop changes (0.5%). Mutation frequencies, positive rates, and the types of mutations were similar between tests performed by either Sanger (n = 17,377) or NGS (n = 503). Among patients with a positive genetic finding in a CMT-related gene, 94.9% were positive in one of four genes (PMP22, GJB1, MPZ, or MFN2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...