Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Insect Sci ; 23(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36723233

The Siberian silk moth, Dendrolimus sibiricus Tschetverikov, is a very serious pest of conifers in Russia and is an emerging threat in North America where an accidental introduction could have devastating impacts on native forest resources. Other Dendrolimus Germar species and related Eurasian lasiocampids in the genus Malacosoma (Hubner) could also present a risk to North America's forests. Foreign vessels entering Canadian and U.S. ports are regularly inspected for Lymantria dispar (Linnaeus) and for the presence of other potentially invasive insects, including suspicious lasiocampid eggs. However, eggs are difficult to identify based on morphological features alone. Here, we report on the development of two TaqMan (Roche Molecular Systems, Inc., Rotkreuz, Switzerland) assays designed to assist regulatory agencies in their identification of these insects. Developed using the barcode region of the cytochrome c oxidase I (COI) gene and run in triplex format, the first assay can detect Dendrolimus and Malacosoma DNA, and can distinguish North American from Eurasian Malacosoma species. The second assay is based on markers identified within the internal transcribed spacer 2 (ITS2) region and was designed to specifically identify D. sibiricus, while discriminating closely related Dendrolimus taxa. In addition to providing direct species identification in the context of its use in North America, the D. sibiricus assay should prove useful for monitoring the spread of this pest in Eurasia, where its range overlaps with those of the morphologically identical D. superans (Butler) and similar D. pini (Linnaeus). The assays described here can be performed either in the lab on a benchtop instrument, or on-site using a portable machine.


Bombyx , Manduca , Moths , Animals , Canada , Ovum , Moths/genetics , Insecta
2.
Pest Manag Sci ; 78(1): 336-343, 2022 Jan.
Article En | MEDLINE | ID: mdl-34529882

BACKGROUND: In eastern Canada, surveys of overwintering 2nd instar spruce budworm (Choristoneura fumiferana) larvae ('L2s') are carried out each fall to guide insecticide application decisions in the following spring. These surveys involve the collection of fir and spruce branches in selected stands, followed by the mechanical/chemical removal of larvae. The latter then are counted manually on filter papers, using a stereomicroscope. Considering the significant effort and difficulties which this manual counting entails, we developed a quantitative (q)PCR-based 'molecular counting' approach designed to make this step less tedious. RESULTS: Using the C. fumiferana mitochondrial cytochrome c oxidase 1 (COI) gene as a target for qPCR DNA quantification, we show that the amount of DNA in a larval extract is strongly correlated with the number of larvae used to generate that extract, and that molecular estimates of L2 counts are comparable to those generated using the manual approach. In addition, we used the same DNA extracts to monitor the microsporidian pathogen Nosema fumiferanae, and the hymenopteran parasitoids Glypta fumiferanae and Apanteles fumiferanae in overwintering L2s employing a subset of a TaqMan assay developed by Nisole et al. (2020) for the identification of budworm natural enemies. We show that the proportion of individuals affected by each natural enemy in samples containing a known number of larvae can be estimated from presence/absence data through the binomial probability distribution. CONCLUSION: The present proof-of-principle study shows that a molecular approach for counting L2s and assessing their natural enemy load is clearly possible and is expected to generate reliable results. © 2021 Her Majesty the Queen in Right of Canada. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Reproduced with the permission of the Minister of Natural Resources Canada.


Moths , Animals , Canada , Female , Humans , Larva , Moths/genetics , Seasons
3.
Sci Rep ; 7(1): 14245, 2017 10 27.
Article En | MEDLINE | ID: mdl-29079798

The gypsy moth, Lymantria dispar L., is one of the most destructive forest pests in the world. While the subspecies established in North America is the European gypsy moth (L. dispar dispar), whose females are flightless, the two Asian subspecies, L. dispar asiatica and L. dispar japonica, have flight-capable females, enhancing their invasiveness and warranting precautionary measures to prevent their permanent establishment in North America. Various molecular tools have been developed to help distinguish European from Asian subspecies, several of which are based on the mitochondrial barcode region. In an effort to identify additional informative markers, we undertook the sequencing and analysis of the mitogenomes of 10 geographic variants of L. dispar, including two or more variants of each subspecies, plus the closely related L. umbrosa as outgroup. Several regions of the gypsy moth mitogenomes displayed nucleotide substitutions with potential usefulness for the identification of subspecies and/or geographic origins. Interestingly, the mitogenome of one geographic variant displayed significant divergence relative to the remaining variants, raising questions about its taxonomic status. Phylogenetic analyses placed this population from northern Iran as basal to the L. dispar clades. The present findings will help improve diagnostic tests aimed at limiting risks of AGM invasions.


Genome, Mitochondrial/genetics , Genotype , Geography , Moths/genetics , Animals , Female , Genetic Variation , Phylogeny
4.
J Insect Physiol ; 98: 126-133, 2017 04.
Article En | MEDLINE | ID: mdl-28041943

Endoparasitoids face the challenge of overcoming the immune reaction of their hosts, which typically consists of encapsulation and melanisation of parasitoid eggs or larvae. Some endoparasitic wasps such as the solitary Tranosema rostrale (Hymenoptera: Ichneumonidae) that lay their eggs in larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), have evolved a symbiotic relationship with a polydnavirus (PDV), which in turn helps them suppress the host's immune response. We observed an increase in mortality of immature T. rostrale with increasing temperature, and we tested two hypotheses about the mechanisms involved: high temperatures (1) hamper the expression of T. rostrale PDV genes and (2) enhance the expression of spruce budworm immunity-related genes. Dissections of parasitized spruce budworm larvae reared at 30°C revealed that most parasitoid eggs or larvae had died as a result of encapsulation and melanisation by the host. A qPCR analysis of T. rostrale PDV (TrIV) gene expression showed that the transcription of several TrIV genes in host larvae was downregulated at high temperature. On the other hand, encapsulation, but not melanisation, of foreign bodies in spruce budworm larvae was enhanced at high temperatures, as shown by the injection of Sephadex™ beads into larvae. However, at the molecular level, the transcription of genes related to spruce budworm's melanisation process (prophenoloxidase 1 and 2) was upregulated. Our results support the hypothesis that a temperature-dependent increase of encapsulation response is due to the combined effects of reduced expression of TrIV genes and enhanced expression of host immune genes.


Moths/parasitology , Moths/virology , Polydnaviridae/genetics , Transcription, Genetic , Viral Proteins/genetics , Wasps/physiology , Animals , Host-Parasite Interactions , Hot Temperature , Immunity, Innate , Larva/growth & development , Larva/parasitology , Larva/physiology , Larva/virology , Moths/growth & development , Polydnaviridae/metabolism , Viral Proteins/metabolism , Wasps/growth & development
5.
PLoS One ; 11(8): e0160878, 2016.
Article En | MEDLINE | ID: mdl-27513667

Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L. dispar asiatica, L. dispar japonica) and three closely related Lymantria species (L. umbrosa, L. albescens, L. postalba), all considered potential FIAS in North America. Ships entering Canadian ports are inspected for the presence of suspicious gypsy moth eggs, but those of AGM are impossible to distinguish from eggs of innocuous Lymantria species. To assist regulatory agencies in their identification of these insects, we designed a suite of TaqMan® assays that provide significant improvements over existing molecular assays targeting AGM. The assays presented here can identify all three L. dispar subspecies (including the European gypsy moth, L. dispar dispar), the three other Lymantria species comprising the AGM complex, plus five additional Lymantria species that pose a threat to forests in North America. The suite of assays is built as a "molecular key" (analogous to a taxonomic key) and involves several parallel singleplex and multiplex qPCR reactions. Each reaction uses a combination of primers and probes designed to separate taxa through discriminatory annealing. The success of these assays is based on the presence of single nucleotide polymorphisms (SNPs) in the 5' region of mitochondrial cytochrome c oxidase I (COI) or in its longer, 3' region, as well as on the presence of an indel in the "FS1" nuclear marker, generating North American and Asian alleles, used here to assess Asian introgression into L. dispar dispar. These assays have the advantage of providing rapid and accurate identification of ten Lymantria species and subspecies considered potential FIAS.


Introduced Species , Moths/genetics , Animals , Electron Transport Complex IV/chemistry , Genetic Markers , Moths/classification , North America , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Species Specificity
6.
J Virol ; 89(17): 8909-21, 2015 Sep.
Article En | MEDLINE | ID: mdl-26085165

UNLABELLED: Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE: Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.


DNA, Viral/genetics , Evolution, Molecular , Polydnaviridae/classification , Polydnaviridae/genetics , Animals , Base Sequence , Biological Evolution , Gene Expression Profiling , Genome, Viral , Genomics , Molecular Sequence Data , Polydnaviridae/enzymology , Sequence Analysis, DNA , Viral Proteins/genetics , Wasps/virology
7.
J Gen Virol ; 94(Pt 8): 1888-1895, 2013 Aug.
Article En | MEDLINE | ID: mdl-23658210

Polydnaviruses (PDVs) are symbiotic viruses carried by endoparasitic wasps and transmitted to caterpillar hosts during parasitization. Although they share several features, including a segmented dsDNA genome, a unique life cycle where replication is restricted to the wasp host, and immunodepressive/developmental effects on the caterpillar host, PDVs carried by ichneumonid and braconid wasps (referred to as ichnoviruses and bracoviruses, respectively) have different evolutionary origins. In addition, ichnoviruses (IVs) form two distinct lineages, with viral entities found in wasps belonging to the subfamilies Campopleginae and Banchinae displaying strikingly different virion morphologies and genomic features. However, the current description for banchine IVs is based on the characterization of a single species, namely that of the Glypta fumiferanae IV (GfIV). Here we provide an ultrastructural and genomic analysis of a second banchine IV isolated from the wasp Apophua simplicipes, and we show that this virus shares many features with GfIV, including a multi-nucleocapsid virion, an aggregate genome size of ~300 kb, genome segments <5 kb, an impressively high degree of genome segmentation and a very similar gene content (same gene families in both viruses). Altogether, the data presented here confirm the existence of shared characteristics within this banchine IV lineage.


DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Polydnaviridae/genetics , Polydnaviridae/ultrastructure , Virion/ultrastructure , Wasps/virology , Animals , Cluster Analysis , Molecular Sequence Data , Phylogeny , Polydnaviridae/isolation & purification , Sequence Analysis, DNA
8.
J Gen Virol ; 94(Pt 5): 1134-1144, 2013 May.
Article En | MEDLINE | ID: mdl-23343630

Tranosema rostrale ichnovirus (TrIV) is a polydnavirus (PDV) transmitted by the endoparasitic wasp T. rostrale to its host Choristoneura fumiferana during oviposition. PDV genes are expressed in infected caterpillars, causing physiological disturbances that promote the survival of the developing endoparasite. The previously sequenced genome of TrIV contains ~86 genes organized in multigene families and distributed on multiple segments of circular dsDNA. Among these, the 'T. rostrale virus' (TrV) family comprises seven genes that are absent in other PDV genomes examined to date and whose function(s) remain(s) unknown. Here, we initiated a functional analysis of the TrV family using qPCR, transfection and RNAi approaches. TrV family genes were weakly expressed in wasp ovaries, but some displayed high transcript abundance in parasitized caterpillars. Whilst TrV1 was the most highly transcribed TrV gene in infected caterpillars, transcript levels for TrV5 and TrV6 were nearly undetectable, indicating that they may be pseudogenes. Temporal and tissue-specific patterns of transcript abundance were similar for all expressed TrV family genes, indicative of an apparent lack of difference in function or tissue specificity. Infection of Cf-203 and Sf-21 insect cells with TrIV led to a dose-dependent inhibition of cell proliferation with no sign of apoptosis. Whilst similar inhibition was observed following transfection of cells with a cloned genome segment carrying the TrV1 gene, RNA interference targeting TrV1 largely restored cell growth in TrIV-infected cells, indicating that TrV1 expression was responsible for the observed inhibition. We suggest that TrV genes may contribute to host developmental disruption by interfering with host-cell proliferation during parasitism.


Gene Expression Regulation, Viral/genetics , Insect Vectors/virology , Lepidoptera/virology , Polydnaviridae/physiology , Wasps/virology , Animals , Cell Line , Cell Proliferation , DNA, Viral/genetics , Female , Genome, Viral/genetics , Larva , Lepidoptera/parasitology , Multigene Family , Organ Specificity , Oviposition , Polydnaviridae/genetics , RNA Interference , RNA, Viral/genetics
9.
J Exp Bot ; 57(11): 2719-34, 2006.
Article En | MEDLINE | ID: mdl-16840511

Fructans are the main storage compound in Lolium perenne. To account for the prevailing neokestose-based fructan synthesis in this species, a cDNA library of L. perenne was screened by using the onion (Allium cepa) fructan:fructan 6G-fructosyltransferase (6G-FFT) as a probe. A full length Lp6G-FFT clone was isolated with significant homologies to vacuolar type fructosyltransferases and invertases. The functionality of the cDNA was tested by heterologous expression in Pichia pastoris. The recombinant protein demonstrated both 6G-FFT and fructan:fructan 1-fructosyltransferase activities (1-FFT) with a maximum 6G-FFT/1-FFT ratio of two. The activity of 6G-FFT was investigated with respect to developmental stage, tissue distribution, and alterations in carbohydrate status expression and compared to sucrose:sucrose 1-fructosyltransferase (1-SST). Lp6G-FFT and Lp1-SST were predominantly expressed in the basal part of elongating leaves and leaf sheaths. Expression of both genes declined along the leaf axis, in parallel with the spatial occurrence of fructan and fructosyltransferase activities. Surprisingly, Lp6G-FFT was highly expressed in photosynthetically active tissues where very low extractable fructosyltransferase activity and fructan amounts were detected, suggesting a post-transcriptional regulation of expression. Lp6G-FFT gene expression increased only in elongating leaves following similar increases of sucrose content in blades, sheaths, and elongating leaf bases. Regulation of Lp6G-FFT gene expression depends on the tissue according to its sink-source status.


Hexosyltransferases/genetics , Lolium/enzymology , Plant Proteins/genetics , Amino Acid Sequence , Carbohydrate Metabolism , DNA, Complementary/chemistry , Fructans/biosynthesis , Gene Expression Regulation, Plant , Gene Library , Hexosyltransferases/chemistry , Hexosyltransferases/metabolism , Inulin/biosynthesis , Lolium/genetics , Models, Biological , Molecular Sequence Data , Phylogeny , Pichia/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/chemistry , Plant Proteins/metabolism , Recombinant Fusion Proteins/analysis , Sequence Alignment , Sucrose/metabolism
...