Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617225

RESUMEN

Antigens from protein subunit vaccination traffic from the tissue to the draining lymph node, either passively via the lymph or carried by dendritic cells at the local injection site. Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens, and archived antigen can be released during subsequent inflammatory stimulus to improve immune responses. Here, we answer questions about how LECs achieve durable antigen archiving and whether there are transcriptional signatures associated with LECs containing high levels of antigen. We used single cell sequencing in dissociated LN tissue to quantify antigen levels in LEC and dendritic cell populations at multiple timepoints after immunization, and used machine learning to define a unique transcriptional program within archiving LECs that can predict LEC archiving capacity in independent data sets. Finally, we validated this modeling, showing we could predict antigen archiving from a transcriptional dataset of CHIKV infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish a unique transcriptional program in LECs that promotes antigen archiving that can be translated to other systems.

2.
NPJ Vaccines ; 9(1): 66, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514656

RESUMEN

Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.

3.
Cell Mol Life Sci ; 79(5): 275, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505125

RESUMEN

In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.


Asunto(s)
Antígenos , Vacunas , Humanos , Sistema Inmunológico , Receptores de Reconocimiento de Patrones , Virus Vaccinia
4.
Elife ; 102021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843587

RESUMEN

The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.


The lymphatic system is a network of ducts that transports fluid, proteins, and immune cells from different organs around the body. Lymph nodes provide pit stops at hundreds of points along this network where immune cells reside, and lymph fluid can be filtered and cleaned. When pathogens, such as viruses or bacteria, enter the body during an infection, fragments of their proteins can get swept into the lymph nodes. These pathogenic proteins or protein fragments activate resident immune cells and kickstart the immune response. Vaccines are designed to mimic this process by introducing isolated pathogenic proteins in a controlled way to stimulate similar immune reactions in lymph nodes. Once an infection has been cleared by the immune system, or a vaccination has triggered the immune system, most pathogenic proteins get cleared away. However, a small number of pathogenic proteins remain in the lymph nodes to enable immune cells to respond more strongly and quickly the next time they see the same pathogen. Yet it is largely unclear how much protein remains for training and how or where it is all stored. Current techniques are not sensitive or long-lived enough to accurately detect and track these small protein deposits over time. Walsh, Sheridan, Lucas, et al. have addressed this problem by developing biological tags that can be attached to the pathogenic proteins so they can be traced. These tags were designed so the body cannot easily break them down, helping them last as long as the proteins they are attached to. Walsh, Sheridan, Lucas et al. tested whether vaccinating mice with the tagged proteins allowed the proteins to be tracked. The method they used was designed to identify individual cell types based on their genetic information along with the tag. This allowed them to accurately map the complex network of cells involved in storing and retrieving archived protein fragments, as well as those involved in training new immune cells to recognize them. These results provide important insights into the protein archiving system that is involved in enhancing immune memory. This may help guide the development of new vaccination strategies that can manipulate how proteins are archived to establish more durable immune protection. The biological tags developed could also be used to track therapeutic proteins, allowing scientists to determine how long cancer drugs, antibody therapies or COVID19 anti-viral agents remain in the body. This information could then be used by doctors to plan specific and personalized treatment timetables for patients.


Asunto(s)
Antígenos/metabolismo , Ganglios Linfáticos/metabolismo , Análisis de la Célula Individual , Animales , Presentación de Antígeno , Antígenos/genética , Antígenos/inmunología , Caveolas/inmunología , Caveolas/metabolismo , Células Cultivadas , ADN/genética , ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endocitosis , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/genética , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Oligonucleótidos Fosforotioatos/genética , Oligonucleótidos Fosforotioatos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Factores de Tiempo , Distribución Tisular , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...